Select Page
Russia’s Killer Drone in Ukraine Raises Fears About AI in Warfare

Russia’s Killer Drone in Ukraine Raises Fears About AI in Warfare

A Russian “suicide drone” that boasts the ability to identify targets using artificial intelligence has been spotted in images of the ongoing invasion of Ukraine.

Photographs showing what appears to be the KUB-BLA, a type of lethal drone known as a “loitering munition” sold by ZALA Aero, a subsidiary of the Russian arms company Kalashnikov, have appeared on Telegram and Twitter in recent days. The pictures show damaged drones that appear to have either crashed or been shot down.

With a wingspan of 1.2 meters, the sleek white drone resembles a small pilotless fighter jet. It is fired from a portable launch, can travel up to 130 kilometers per hour for 30 minutes, and deliberately crashes into a target, detonating a 3-kilo explosive.

ZALA Aero, which first demoed the KUB-BLA at a Russian air show in 2019, claims in promotional material that it features “intelligent detection and recognition of objects by class and type in real time.”

The drone itself may do little to alter the course of the war in Ukraine, as there is no evidence that Russia is using them widely so far. But its appearance has sparked concern about the potential for AI to take a greater role in making lethal decisions.

“The notion of a killer robot—where you have artificial intelligence fused with weapons—that technology is here, and it’s being used,” says Zachary Kallenborn, a research affiliate with the National Consortium for the Study of Terrorism and Responses to Terrorism (START).

Advances in AI have made it easier to incorporate autonomy into weapons systems, and have raised the prospect that more capable systems could eventually decide for themselves who to kill. A UN report published last year concluded that a lethal drone with this capability may have been used in the Libyan civil war.

It is unclear if the drone may have been operated in this way in Ukraine. One of the challenges with autonomous weapons may prove to be the difficulty of determining when full autonomy is used in a lethal context, Kallenborn says.

The KUB-BLA images have yet to be verified by official sources, but the drone is known to be a relatively new part of Russia’s military arsenal. Its use would also be consistent with Russia’s shifting strategy in the face of the unexpectedly strong Ukrainian resistance, says Samuel Bendett, an expert on Russia’s military with the defense think tank CNA.

Bendett says Russia has built up its drone capabilities in recent years, using them in Syria and acquiring more after Azerbaijani forces demonstrated their effectiveness against Armenian ground military in the 2020 ​​Nagorno-Karabakh war. “They are an extraordinarily cheap alternative to flying manned missions,” he says. “They are very effective both militarily and of course psychologically.”

The fact that Russia seems to have used few drones in Ukraine early on may be due to misjudging the resistance or because of effective Ukrainian countermeasures.

But drones have also highlighted a key vulnerability in Russia’s invasion, which is now entering its third week. Ukrainian forces have used a remotely operated Turkish-made drone called the TB2 to great effect against Russian forces, shooting guided missiles at Russian missile launchers and vehicles. The paraglider-sized drone, which relies on a small crew on the ground, is slow and cannot defend itself, but it has proven effective against a surprisingly weak Russian air campaign.

DeepMind Has Trained an AI to Control Nuclear Fusion

DeepMind Has Trained an AI to Control Nuclear Fusion

The inside of a tokamak—the donut-shaped vessel designed to contain a nuclear fusion reaction—presents a special kind of chaos. Hydrogen atoms are smashed together at unfathomably high temperatures, creating a whirling, roiling plasma that’s hotter than the surface of the sun. Finding smart ways to control and confine that plasma will be key to unlocking the potential of nuclear fusion, which has been mooted as the clean energy source of the future for decades. At this point, the science underlying fusion seems sound, so what remains is an engineering challenge. “We need to be able to heat this matter up and hold it together for long enough for us to take energy out of it,” says Ambrogio Fasoli, director of the Swiss Plasma Center at École Polytechnique Fédérale de Lausanne.

That’s where DeepMind comes in. The artificial intelligence firm, backed by Google parent company Alphabet, has previously turned its hand to video games and protein folding, and has been working on a joint research project with the Swiss Plasma Center to develop an AI for controlling a nuclear fusion reaction.

In stars, which are also powered by fusion, the sheer gravitational mass is enough to pull hydrogen atoms together and overcome their opposing charges. On Earth, scientists instead use powerful magnetic coils to confine the nuclear fusion reaction, nudging it into the desired position and shaping it like a potter manipulating clay on a wheel. The coils have to be carefully controlled to prevent the plasma from touching the sides of the vessel: this can damage the walls and slow down the fusion reaction. (There’s little risk of an explosion as the fusion reaction cannot survive without magnetic confinement).

But every time researchers want to change the configuration of the plasma and try out different shapes that may yield more power or a cleaner plasma, it necessitates a huge amount of engineering and design work. Conventional systems are computer-controlled and based on models and careful simulations, but they are, Fasoli says, “complex and not always necessarily optimized.”

DeepMind has developed an AI that can control the plasma autonomously. A paper published in the journal Nature describes how researchers from the two groups taught a deep reinforcement learning system to control the 19 magnetic coils inside TCV, the variable-configuration tokamak at the Swiss Plasma Center, which is used to carry out research that will inform the design of bigger fusion reactors in future. “AI, and specifically reinforcement learning, is particularly well suited to the complex problems presented by controlling plasma in a tokamak,” says Martin Riedmiller, control team lead at DeepMind.

The neural network—a type of AI setup designed to mimic the architecture of the human brain—was initially trained in a simulation. It started by observing how changing the settings on each of the 19 coils affected the shape of the plasma inside the vessel. Then it was given different shapes to try to recreate in the plasma. These included a D-shaped cross-section close to what will be used inside ITER (formerly the International Thermonuclear Experimental Reactor), the large-scale experimental tokamak under construction in France, and a snowflake configuration that could help dissipate the intense heat of the reaction more evenly around the vessel.

DeepMind’s neural network was able to manipulate the plasma inside a fusion reactor into a number of different shapes that fusion researchers have been exploring.Illustration: DeepMind & SPC/EPFL 

DeepMind’s AI was able to autonomously figure out how to create these shapes by manipulating the magnetic coils in the right way—both in the simulation, and when the scientists ran the same experiments for real inside the TCV tokamak to validate the simulation. It represents a “significant step,” says Fasoli, one that could influence the design of future tokamaks or even speed up the path to viable fusion reactors. “It’s a very positive result,” says Yasmin Andrew, a fusion specialist at Imperial College London, who was not involved in the research. “It will be interesting to see if they can transfer the technology to a larger tokamak.”

Fusion offered a particular challenge to DeepMind’s scientists because the process is both complex and continuous. Unlike a turn-based game like Go, which the company has famously conquered with its AlphaGo AI, the state of a plasma constantly changes. And to make things even harder, it can’t be continuously measured. It is what AI researchers call an “under–observed system.”

“Sometimes algorithms which are good at these discrete problems struggle with such continuous problems,” says Jonas Buchli, a research scientist at DeepMind. “This was a really big step forward for our algorithm because we could show that this is doable. And we think this is definitely a very, very complex problem to be solved. It is a different kind of complexity than what you have in games.”

Simulation Tech Can Help Predict the Biggest Threats

Simulation Tech Can Help Predict the Biggest Threats

The character of conflict between nations has fundamentally changed. Governments and militaries now fight on our behalf in the “gray zone,” where the boundaries between peace and war are blurred. They must navigate a complex web of ambiguous and deeply interconnected challenges, ranging from political destabilization and disinformation campaigns to cyberattacks, assassinations, proxy operations, election meddling, or perhaps even human-made pandemics. Add to this list the existential threat of climate change (and its geopolitical ramifications) and it is clear that the description of what now constitutes a national security issue has broadened, each crisis straining or degrading the fabric of national resilience.

Traditional analysis tools are poorly equipped to predict and respond to these blurred and intertwined threats. Instead, in 2022 governments and militaries will use sophisticated and credible real-life simulations, putting software at the heart of their decision-making and operating processes. The UK Ministry of Defence, for example, is developing what it calls a military Digital Backbone. This will incorporate cloud computing, modern networks, and a new transformative capability called a Single Synthetic Environment, or SSE.

This SSE will combine artificial intelligence, machine learning, computational modeling, and modern distributed systems with trusted data sets from multiple sources to support detailed, credible simulations of the real world. This data will be owned by critical institutions, but will also be sourced via an ecosystem of trusted partners, such as the Alan Turing Institute.

An SSE offers a multilayered simulation of a city, region, or country, including high-quality mapping and information about critical national infrastructure, such as power, water, transport networks, and telecommunications. This can then be overlaid with other information, such as smart-city data, information about military deployment, or data gleaned from social listening. From this, models can be constructed that give a rich, detailed picture of how a region or city might react to a given event: a disaster, epidemic, or cyberattack or a combination of such events organized by state enemies.

Defense synthetics are not a new concept. However, previous solutions have been built in a standalone way that limits reuse, longevity, choice, and—crucially—the speed of insight needed to effectively counteract gray-zone threats.

National security officials will be able to use SSEs to identify threats early, understand them better, explore their response options, and analyze the likely consequences of different actions. They will even be able to use them to train, rehearse, and implement their plans. By running thousands of simulated futures, senior leaders will be able to grapple with complex questions, refining policies and complex plans in a virtual world before implementing them in the real one.

One key question that will only grow in importance in 2022 is how countries can best secure their populations and supply chains against dramatic weather events coming from climate change. SSEs will be able to help answer this by pulling together regional infrastructure, networks, roads, and population data, with meteorological models to see how and when events might unfold.

Dumbed Down AI Rhetoric Harms Everyone

Dumbed Down AI Rhetoric Harms Everyone

When the European Union Commission released its regulatory proposal on artificial intelligence last month, much of the US policy community celebrated. Their praise was at least partly grounded in truth: The world’s most powerful democratic states haven’t sufficiently regulated AI and other emerging tech, and the document marked something of a step forward. Mostly, though, the proposal and responses to it underscore democracies’ confusing rhetoric on AI.

Over the past decade, high-level stated goals about regulating AI have often conflicted with the specifics of regulatory proposals, and what end-states should look like aren’t well-articulated in either case. Coherent and meaningful progress on developing internationally attractive democratic AI regulation, even as that may vary from country to country, begins with resolving the discourse’s many contradictions and unsubtle characterizations.

The EU Commission has touted its proposal as an AI regulation landmark. Executive vice president Margrethe Vestager said upon its release, “We think that this is urgent. We are the first on this planet to suggest this legal framework.” Thierry Breton, another commissioner, said the proposals “aim to strengthen Europe’s position as a global hub of excellence in AI from the lab to the market, ensure that AI in Europe respects our values and rules, and harness the potential of AI for industrial use.”

This is certainly better than many national governments, especially the US, stagnating on rules of the road for the companies, government agencies, and other institutions. AI is already widely used in the EU despite minimal oversight and accountability, whether for surveillance in Athens or operating buses in Málaga, Spain.

But to cast the EU’s regulation as “leading” simply because it’s first only masks the proposal’s many issues. This kind of rhetorical leap is one of the first challenges at hand with democratic AI strategy.

Of the many “specifics” in the 108-page proposal, its approach to regulating facial recognition is especially consequential. “The use of AI systems for ‘real-time’ remote biometric identification of natural persons in publicly accessible spaces for the purpose of law enforcement,” it reads, “is considered particularly intrusive in the rights and freedoms of the concerned persons,” as it can affect private life, “evoke a feeling of constant surveillance,” and “indirectly dissuade the exercise of the freedom of assembly and other fundamental rights.” At first glance, these words may signal alignment with the concerns of many activists and technology ethicists on the harms facial recognition can inflict on marginalized communities and grave mass-surveillance risks.

The commission then states, “The use of those systems for the purpose of law enforcement should therefore be prohibited.” However, it would allow exceptions in “three exhaustively listed and narrowly defined situations.” This is where the loopholes come into play.

The exceptions include situations that “involve the search for potential victims of crime, including missing children; certain threats to the life or physical safety of natural persons or of a terrorist attack; and the detection, localization, identification or prosecution of perpetrators or suspects of the criminal offenses.” This language, for all that the scenarios are described as “narrowly defined,” offers myriad justifications for law enforcement to deploy facial recognition as it wishes. Permitting its use in the “identification” of “perpetrators or suspects” of criminal offenses, for example, would allow precisely the kind of discriminatory uses of often racist and sexist facial-recognition algorithms that activists have long warned about.

The EU’s privacy watchdog, the European Data Protection Supervisor, quickly pounced on this. “A stricter approach is necessary given that remote biometric identification, where AI may contribute to unprecedented developments, presents extremely high risks of deep and non-democratic intrusion into individuals’ private lives,” the EDPS statement read. Sarah Chander from the nonprofit organization European Digital Rights described the proposal to the Verge as “a veneer of fundamental rights protection.” Others have noted how these exceptions mirror legislation in the US that on the surface appears to restrict facial recognition use but in fact has many broad carve-outs.

Humans Need to Create Interspecies Money to Save the Planet

Humans Need to Create Interspecies Money to Save the Planet

The greatest failure of the digital age is how far removed it is from nature. The microchip has no circadian rhythm, nor has the computer breath. The network is incorporeal. This may represent an existential risk for life on Earth. I believe we have to make a decision: Succumb to pushing more of our brain time and economy into unnatural online constructs, or build the digital anew in a way that is rooted in nature.

Nature is excessive, baroque. Its song is not ours alone. We share this planet with 8 million nonhuman species, yet we scarcely think of how they move through the world. There is no way for wild animals, trees, or other species to make themselves known to us online or to express their preferences to us. The only value most of them have is the sum value of their processed body parts. Those that are not eaten are forgotten, or perhaps never remembered: Only 2 million of them are recorded by science.

This decade will be the most destructive for nonhuman life in recorded history. It could also be the most regenerative. Nonhuman life-forms may soon gain some agency in the world. I propose the invention of an Interspecies Money. I’m not talking about Dogecoin, the meme of a Shiba Inu dog that’s become a $64 billion cryptocurrency (as of today). I’m talking about a digital currency that could allow several hundred billion dollars to be held by other beings simply on account of being themselves and no other and being alive in the world. It is possible they will be able to spend and invest this digital currency to improve their lives. And because the services they ask for—recognition, security, room to grow, nutrition, even veterinary care—will often be provided by poor communities in the tropics, human lives will also be improved.

Money needs to cross the species divide. Whoa, I know. King Julien with a credit card. Flower grenades into the meaning of life. Bear with me. If money, as some economic theorists suggest, is a form of memory, it is obvious that nonhuman species are unseen by the market economy because no money has ever been assigned by them. In order to preserve the survival of some species it is necessary in some situations, usually when they are in direct competition with humans, to give them economic advantage. An orchid, a baobab tree, a dugong, an orangutan, even at some future point the trace lines of a mycelial network—all of these should hold money.

We have the technology to start building Interspecies Money now. Indeed, it sometimes seems to me that the living system (Gaia or otherwise) is in fact producing the tools needed to protect complex life at precisely the moment it is most needed: fintech solutions in mobile money, digital wallets, and cryptocurrencies, which have shown that it is possible to address micropayments accurately and cheaply; cloud computing firms, which have demonstrated that large amounts of data can be stored and processed, even in countries that favor data sovereignty; hardware, which has become smarter and cheaper. Single-board computers (Raspberry Pis), camera traps, microphones, and other cheap sensors, energy solutions in solar arrays and batteries, internet connectivity, flying and ground robots, low-orbit satellite systems, and the pervasiveness of smartphones make it plausible to build a verification system in the wild that is trusted by the markets.

The first requirement of Interspecies Money is to provide a digital identity of an individual animal, or a herd, or a type (depending on size, population dynamics, and other characteristics of the organisms). This can be done through many methods. Birds may be identified by sound, insects by genetics, trees by probability. For most wild animals it will be done by sight. Some may be observed constantly, others only glimpsed. For instance, the digital identity of rare Hirola antelopes in Kenya and Somalia, of which there are only 500 in existence, will be minted from images gathered on mobile phones, camera traps, and drones by community rangers. The identity serves as a digital twin, which in legal and practical terms holds the money and releases it based on the services the life-form requires.