Select Page
What Makes an Artist in the Age of Algorithms?

What Makes an Artist in the Age of Algorithms?

In 2021, technology’s role in how art is generated remains up for debate and discovery. From the rise of NFTs to the proliferation of techno-artists who use generative adversarial networks to produce visual expressions, to smartphone apps that write new music, creatives and technologists are continually experimenting with how art is produced, consumed, and monetized.

BT, the Grammy-nominated composer of 2010’s These Hopeful Machines, has emerged as a world leader at the intersection of tech and music. Beyond producing and writing for the likes of David Bowie, Death Cab for Cutie, Madonna, and the Roots, and composing scores for The Fast and the Furious, Smallville, and many other shows and movies, he’s helped pioneer production techniques like stutter editing and granular synthesis. This past spring, BT released GENESIS.JSON, a piece of software that contains 24 hours of original music and visual art. It features 15,000 individually sequenced audio and video clips that he created from scratch, which span different rhythmic figures, field recordings of cicadas and crickets, a live orchestra, drum machines, and myriad other sounds that play continuously. And it lives on the blockchain. It is, to my knowledge, the first composition of its kind.

Could ideas like GENESIS.JSON be the future of original music, where composers use AI and the blockchain to create entirely new art forms? What makes an artist in the age of algorithms? I spoke with BT to learn more.

What are your central interests at the interface of artificial intelligence and music?

I am really fascinated with this idea of what an artist is. Speaking in my common tongue—music—it’s a very small array of variables. We have 12 notes. There’s a collection of rhythms that we typically use. There’s a sort of vernacular of instruments, of tones, of timbres, but when you start to add them up, it becomes this really deep data set.

On its surface, it makes you ask, “What is special and unique about an artist?” And that’s something that I’ve been curious about my whole adult life. Seeing the research that was happening in artificial intelligence, my immediate thought was that music is low-hanging fruit.

These days, we can take the sum total of the artists’ output and we can take their artistic works and we can quantify the entire thing into a training set, a massive, multivariable training set. And we don’t even name the variables. The RNN (recurrent neural networks) and CNNs (convolutional neural networks) name them automatically.

So you’re referring to a body of music that can be used to “train” an artificial intelligence algorithm that can then create original music that resembles the music it was trained on. If we reduce the genius of artists like Coltrane or Mozart, say, into a training set and can recreate their sound, how will musicians and music connoisseurs respond?

I think that the closer we get, it becomes this uncanny valley idea. Some would say that things like music are sacrosanct and have to do with very base-level things about our humanity. It’s not hard to get into kind of a spiritual conversation about what music is as a language, and what it means, and how powerful it is, and how it transcends culture, race, and time. So the traditional musician might say, “That’s not possible. There’s so much nuance and feeling, and your life experience, and these kinds of things that go into the musical output.”

And the sort of engineer part of me goes, well Look at what Google has made. It’s a simple kind of MIDI-generation engine, where they’ve taken all Bach’s works and it’s able to spit out [Bach-like] fugues. Because Bach wrote so many fugues, he’s a great example. Also, he’s the father of modern harmony. Musicologists listen to some of those Google Magenta fugues and can’t distinguish them from Bach’s original works. Again, this makes us question what constitutes an artist.

I’m both excited and have incredible trepidation about this space that we’re expanding into. Maybe the question I want to be asking is less “We can, but should we?” and more “How do we do this responsibly, because it’s happening?”

Right now, there are companies that are using something like Spotify or YouTube to train their models with artists who are alive, whose works are copyrighted and protected. But companies are allowed to take someone’s work and train models with it right now. Should we be doing that? Or should we be speaking to the artists themselves first? I believe that there needs to be protective mechanisms put in place for visual artists, for programmers, for musicians.

An Algorithm That Predicts Deadly Infections Is Often Flawed

An Algorithm That Predicts Deadly Infections Is Often Flawed

A complication of infection known as sepsis is the number one killer in US hospitals. So it’s not surprising that more than 100 health systems use an early warning system offered by Epic Systems, the dominant provider of US electronic health records. The system throws up alerts based on a proprietary formula tirelessly watching for signs of the condition in a patient’s test results.

But a new study using data from nearly 30,000 patients in University of Michigan hospitals suggests Epic’s system performs poorly. The authors say it missed two-thirds of sepsis cases, rarely found cases medical staff did not notice, and frequently issued false alarms.

Karandeep Singh, an assistant professor at University of Michigan who led the study, says the findings illustrate a broader problem with the proprietary algorithms increasingly used in health care. “They’re very widely used, and yet there’s very little published on these models,” Singh says. “To me that’s shocking.”

The study was published Monday in JAMA Internal Medicine. An Epic spokesperson disputed the study’s conclusions, saying the company’s system has “helped clinicians save thousands of lives.”

Epic’s is not the first widely used health algorithm to trigger concerns that technology supposed to improve health care is not delivering, or even actively harmful. In 2019, a system used on millions of patients to prioritize access to special care for people with complex needs was found to lowball the needs of Black patients compared to white patients. That prompted some Democratic senators to ask federal regulators to investigate bias in health algorithms. A study published in April found that statistical models used to predict suicide risk in mental health patients performed well for white and Asian patients but poorly for Black patients.

The way sepsis stalks hospital wards has made it a special target of algorithmic aids for medical staff. Guidelines from the Centers for Disease Control and Prevention to health providers on sepsis encourage use of electronic medical records for surveillance and predictions. Epic has several competitors offering commercial warning systems, and some US research hospitals have built their own tools.

Automated sepsis warnings have huge potential, Singh says, because key symptoms of the condition, such as low blood pressure, can have other causes, making it difficult for staff to spot early. Starting sepsis treatment such as antibiotics just an hour sooner can make a big difference to patient survival. Hospital administrators often take special interest in sepsis response, in part because it contributes to US government hospital ratings.

Singh runs a lab at Michigan researching applications of machine learning to patient care. He got curious about Epic’s sepsis warning system after being asked to chair a committee at the university’s health system created to oversee uses of machine learning.

As Singh learned more about the tools in use at Michigan and other health systems, he became concerned that they mostly came from vendors that disclosed little about how they worked or performed. His own system had a license to use Epic’s sepsis prediction model, which the company told customers was highly accurate. But there had been no independent validation of its performance.

Singh and Michigan colleagues tested Epic’s prediction model on records for nearly 30,000 patients covering almost 40,000 hospitalizations in 2018 and 2019. The researchers noted how often Epic’s algorithm flagged people who developed sepsis as defined by the CDC and the Centers for Medicare and Medicaid Services. And they compared the alerts that the system would have triggered with sepsis treatments logged by staff, who did not see Epic sepsis alerts for patients included in the study.

The researchers say their results suggest Epic’s system wouldn’t make a hospital much better at catching sepsis and could burden staff with unnecessary alerts. The company’s algorithm did not identify two-thirds of the roughly 2,500 sepsis cases in the Michigan data. It would have alerted for 183 patients who developed sepsis but had not been given timely treatment by staff.

AI Could Soon Write Code Based on Ordinary Language

AI Could Soon Write Code Based on Ordinary Language

In recent years, researchers have used artificial intelligence to improve translation between programming languages or automatically fix problems. The AI system DrRepair, for example, has been shown to solve most issues that spawn error messages. But some researchers dream of the day when AI can write programs based on simple descriptions from non-experts.

On Tuesday, Microsoft and OpenAI shared plans to bring GPT-3, one of the world’s most advanced models for generating text, to programming based on natural language descriptions. This is the first commercial application of GPT-3 undertaken since Microsoft invested $1 billion in OpenAI last year and gained exclusive licensing rights to GPT-3.

“If you can describe what you want to do in natural language, GPT-3 will generate a list of the most relevant formulas for you to choose from,” said Microsoft CEO Satya Nadella in a keynote address at the company’s Build developer conference. “The code writes itself.”

Courtesy of Microsoft

Microsoft VP Charles Lamanna told WIRED the sophistication offered by GPT-3 can help people tackle complex challenges and empower people with little coding experience. GPT-3 will translate natural language into PowerFx, a fairly simple programming language similar to Excel commands that Microsoft introduced in March.

This is the latest demonstration of applying AI to coding. Last year at Microsoft’s Build, OpenAI CEO Sam Altman demoed a language model fine-tuned with code from GitHub that automatically generates lines of Python code. As WIRED detailed last month, startups like SourceAI are also using GPT-3 to generate code. IBM last month showed how its Project CodeNet, with 14 million code samples from more than 50 programming languages, could reduce the time needed to update a program with millions of lines of Java code for an automotive company from one year to one month.

Microsoft’s new feature is based on a neural network architecture known as Transformer, used by big tech companies including Baidu, Google, Microsoft, Nvidia, and Salesforce to create large language models using text training data scraped from the web. These language models continually grow larger. The largest version of Google’s BERT, a language model released in 2018, had 340 million parameters, a building block of neural networks. GPT-3, which was released one year ago, has 175 billion parameters.

Such efforts have a long way to go, however. In one recent test, the best model succeeded only 14 percent of the time on introductory programming challenges compiled by a group of AI researchers.

Dumbed Down AI Rhetoric Harms Everyone

Dumbed Down AI Rhetoric Harms Everyone

When the European Union Commission released its regulatory proposal on artificial intelligence last month, much of the US policy community celebrated. Their praise was at least partly grounded in truth: The world’s most powerful democratic states haven’t sufficiently regulated AI and other emerging tech, and the document marked something of a step forward. Mostly, though, the proposal and responses to it underscore democracies’ confusing rhetoric on AI.

Over the past decade, high-level stated goals about regulating AI have often conflicted with the specifics of regulatory proposals, and what end-states should look like aren’t well-articulated in either case. Coherent and meaningful progress on developing internationally attractive democratic AI regulation, even as that may vary from country to country, begins with resolving the discourse’s many contradictions and unsubtle characterizations.

The EU Commission has touted its proposal as an AI regulation landmark. Executive vice president Margrethe Vestager said upon its release, “We think that this is urgent. We are the first on this planet to suggest this legal framework.” Thierry Breton, another commissioner, said the proposals “aim to strengthen Europe’s position as a global hub of excellence in AI from the lab to the market, ensure that AI in Europe respects our values and rules, and harness the potential of AI for industrial use.”

This is certainly better than many national governments, especially the US, stagnating on rules of the road for the companies, government agencies, and other institutions. AI is already widely used in the EU despite minimal oversight and accountability, whether for surveillance in Athens or operating buses in Málaga, Spain.

But to cast the EU’s regulation as “leading” simply because it’s first only masks the proposal’s many issues. This kind of rhetorical leap is one of the first challenges at hand with democratic AI strategy.

Of the many “specifics” in the 108-page proposal, its approach to regulating facial recognition is especially consequential. “The use of AI systems for ‘real-time’ remote biometric identification of natural persons in publicly accessible spaces for the purpose of law enforcement,” it reads, “is considered particularly intrusive in the rights and freedoms of the concerned persons,” as it can affect private life, “evoke a feeling of constant surveillance,” and “indirectly dissuade the exercise of the freedom of assembly and other fundamental rights.” At first glance, these words may signal alignment with the concerns of many activists and technology ethicists on the harms facial recognition can inflict on marginalized communities and grave mass-surveillance risks.

The commission then states, “The use of those systems for the purpose of law enforcement should therefore be prohibited.” However, it would allow exceptions in “three exhaustively listed and narrowly defined situations.” This is where the loopholes come into play.

The exceptions include situations that “involve the search for potential victims of crime, including missing children; certain threats to the life or physical safety of natural persons or of a terrorist attack; and the detection, localization, identification or prosecution of perpetrators or suspects of the criminal offenses.” This language, for all that the scenarios are described as “narrowly defined,” offers myriad justifications for law enforcement to deploy facial recognition as it wishes. Permitting its use in the “identification” of “perpetrators or suspects” of criminal offenses, for example, would allow precisely the kind of discriminatory uses of often racist and sexist facial-recognition algorithms that activists have long warned about.

The EU’s privacy watchdog, the European Data Protection Supervisor, quickly pounced on this. “A stricter approach is necessary given that remote biometric identification, where AI may contribute to unprecedented developments, presents extremely high risks of deep and non-democratic intrusion into individuals’ private lives,” the EDPS statement read. Sarah Chander from the nonprofit organization European Digital Rights described the proposal to the Verge as “a veneer of fundamental rights protection.” Others have noted how these exceptions mirror legislation in the US that on the surface appears to restrict facial recognition use but in fact has many broad carve-outs.

Humans Need to Create Interspecies Money to Save the Planet

Humans Need to Create Interspecies Money to Save the Planet

The greatest failure of the digital age is how far removed it is from nature. The microchip has no circadian rhythm, nor has the computer breath. The network is incorporeal. This may represent an existential risk for life on Earth. I believe we have to make a decision: Succumb to pushing more of our brain time and economy into unnatural online constructs, or build the digital anew in a way that is rooted in nature.

Nature is excessive, baroque. Its song is not ours alone. We share this planet with 8 million nonhuman species, yet we scarcely think of how they move through the world. There is no way for wild animals, trees, or other species to make themselves known to us online or to express their preferences to us. The only value most of them have is the sum value of their processed body parts. Those that are not eaten are forgotten, or perhaps never remembered: Only 2 million of them are recorded by science.

This decade will be the most destructive for nonhuman life in recorded history. It could also be the most regenerative. Nonhuman life-forms may soon gain some agency in the world. I propose the invention of an Interspecies Money. I’m not talking about Dogecoin, the meme of a Shiba Inu dog that’s become a $64 billion cryptocurrency (as of today). I’m talking about a digital currency that could allow several hundred billion dollars to be held by other beings simply on account of being themselves and no other and being alive in the world. It is possible they will be able to spend and invest this digital currency to improve their lives. And because the services they ask for—recognition, security, room to grow, nutrition, even veterinary care—will often be provided by poor communities in the tropics, human lives will also be improved.

Money needs to cross the species divide. Whoa, I know. King Julien with a credit card. Flower grenades into the meaning of life. Bear with me. If money, as some economic theorists suggest, is a form of memory, it is obvious that nonhuman species are unseen by the market economy because no money has ever been assigned by them. In order to preserve the survival of some species it is necessary in some situations, usually when they are in direct competition with humans, to give them economic advantage. An orchid, a baobab tree, a dugong, an orangutan, even at some future point the trace lines of a mycelial network—all of these should hold money.

We have the technology to start building Interspecies Money now. Indeed, it sometimes seems to me that the living system (Gaia or otherwise) is in fact producing the tools needed to protect complex life at precisely the moment it is most needed: fintech solutions in mobile money, digital wallets, and cryptocurrencies, which have shown that it is possible to address micropayments accurately and cheaply; cloud computing firms, which have demonstrated that large amounts of data can be stored and processed, even in countries that favor data sovereignty; hardware, which has become smarter and cheaper. Single-board computers (Raspberry Pis), camera traps, microphones, and other cheap sensors, energy solutions in solar arrays and batteries, internet connectivity, flying and ground robots, low-orbit satellite systems, and the pervasiveness of smartphones make it plausible to build a verification system in the wild that is trusted by the markets.

The first requirement of Interspecies Money is to provide a digital identity of an individual animal, or a herd, or a type (depending on size, population dynamics, and other characteristics of the organisms). This can be done through many methods. Birds may be identified by sound, insects by genetics, trees by probability. For most wild animals it will be done by sight. Some may be observed constantly, others only glimpsed. For instance, the digital identity of rare Hirola antelopes in Kenya and Somalia, of which there are only 500 in existence, will be minted from images gathered on mobile phones, camera traps, and drones by community rangers. The identity serves as a digital twin, which in legal and practical terms holds the money and releases it based on the services the life-form requires.