Select Page
AI Art Is Challenging the Boundaries of Curation

AI Art Is Challenging the Boundaries of Curation

In just a few years, the number of artworks produced by self-described AI artists has dramatically increased. Some of these works have been sold by large auction houses for dizzying prices and have found their way into prestigious curated collections. Initially spearheaded by a few technologically knowledgeable artists who adopted computer programming as part of their creative process, AI art has recently been embraced by the masses, as image generation technology has become both more effective and easier to use without coding skills.

The AI art movement rides on the coattails of technical progress in computer vision, a research area dedicated to designing algorithms that can process meaningful visual information. A subclass of computer vision algorithms, called generative models, occupies center stage in this story. Generative models are artificial neural networks that can be “trained” on large datasets containing millions of images and learn to encode their statistically salient features. After training, they can produce completely new images that are not contained in the original dataset, often guided by text prompts that explicitly describe the desired results. Until recently, images produced through this approach remained somewhat lacking in coherence or detail, although they possessed an undeniable surrealist charm that captured the attention of many serious artists. However, earlier this year the tech company Open AI unveiled a new model— nicknamed DALL·E 2—that can generate remarkably consistent and relevant images from virtually any text prompt. DALL·E 2 can even produce images in specific styles and imitate famous artists rather convincingly, as long as the desired effect is adequately specified in the prompt. A similar tool has been released for free to the public under the name Craiyon (formerly “DALL·E mini”).

The coming-of-age of AI art raises a number of interesting questions, some of which—such as whether AI art is really art, and if so, to what extent it is really made by AI—are not particularly original. These questions echo similar worries once raised by the invention of photography. By merely pressing a button on a camera, someone without painting skills could suddenly capture a realistic depiction of a scene. Today, a person can press a virtual button to run a generative model and produce images of virtually any scene in any style. But cameras and algorithms do not make art. People do. AI art is art, made by human artists who use algorithms as yet another tool in their creative arsenal. While both technologies have lowered the barrier to entry for artistic creation— which calls for celebration rather than concern—one should not underestimate the amount of skill, talent, and intentionality involved in making interesting artworks.

Like any novel tool, generative models introduce significant changes in the process of art-making. In particular, AI art expands the multifaceted notion of curation and continues to blur the line between curation and creation.

There are at least three ways in which making art with AI can involve curatorial acts. The first, and least original, has to do with the curation of outputs. Any generative algorithm can produce an indefinite number of images, but not all of these will typically be conferred artistic status. The process of curating outputs is very familiar to photographers, some of whom routinely capture hundreds or thousands of shots from which a few, if any, might be carefully selected for display. Unlike painters and sculptors, photographers and AI artists have to deal with an abundance of (digital) objects, whose curation is part and parcel of the artistic process. In AI research at large, the act of “cherry-picking” particularly good outputs is seen as bad scientific practice, a way to misleadingly inflate the perceived performance of a model. When it comes to AI art, however, cherry-picking can be the name of the game. The artist’s intentions and artistic sensibility may be expressed in the very act of promoting specific outputs to the status of artworks.

Second, curation may also happen before any images are generated. In fact, while “curation” applied to art generally refers to the process of selecting existing work for display, curation in AI research colloquially refers to the work that goes into crafting a dataset on which to train an artificial neural network. This work is crucial, because if a dataset is poorly designed, the network will often fail to learn how to represent desired features and perform adequately. Furthermore, if a dataset is biased, the network will tend to reproduce, or even amplify, such bias—including, for example, harmful stereotypes. As the saying goes, “garbage in, garbage out.” The adage holds true for AI art, too, except “garbage” takes on an aesthetic (and subjective) dimension.

The Power and Pitfalls of AI for US Intelligence

The Power and Pitfalls of AI for US Intelligence

In one example of the IC’s successful use of AI, after exhausting all other avenues—from human spies to signals intelligence—the US was able to find an unidentified WMD research and development facility in a large Asian country by locating a bus that traveled between it and other known facilities. To do that, analysts employed algorithms to search and evaluate images of nearly every square inch of the country, according to a senior US intelligence official who spoke on background with the understanding of not being named.

While AI can calculate, retrieve, and employ programming that performs limited rational analyses, it lacks the calculus to properly dissect more emotional or unconscious components of human intelligence that are described by psychologists as system 1 thinking.

AI, for example, can draft intelligence reports that are akin to newspaper articles about baseball, which contain structured non-logical flow and repetitive content elements. However, when briefs require complexity of reasoning or logical arguments that justify or demonstrate conclusions, AI has been found lacking. When the intelligence community tested the capability, the intelligence official says, the product looked like an intelligence brief but was otherwise nonsensical.

Such algorithmic processes can be made to overlap, adding layers of complexity to computational reasoning, but even then those algorithms can’t interpret context as well as humans, especially when it comes to language, like hate speech.

AI’s comprehension might be more analogous to the comprehension of a human toddler, says Eric Curwin, chief technology officer at Pyrra Technologies, which identifies virtual threats to clients from violence to disinformation. “For example, AI can understand the basics of human language, but foundational models don’t have the latent or contextual knowledge to accomplish specific tasks,” Curwin says.

“From an analytic perspective, AI has a difficult time interpreting intent,” Curwin adds. “Computer science is a valuable and important field, but it is social computational scientists that are taking the big leaps in enabling machines to interpret, understand, and predict behavior.”

In order to “build models that can begin to replace human intuition or cognition,” Curwin explains, “researchers must first understand how to interpret behavior and translate that behavior into something AI can learn.”

Although machine learning and big data analytics provide predictive analysis about what might or will likely happen, it can’t explain to analysts how or why it arrived at those conclusions. The opaqueness in AI reasoning and the difficulty vetting sources, which consist of extremely large data sets, can impact the actual or perceived soundness and transparency of those conclusions.

Transparency in reasoning and sourcing are requirements for the analytical tradecraft standards of products produced by and for the intelligence community. Analytic objectivity is also statuatorically required, sparking calls within the US government to update such standards and laws in light of AI’s increasing prevalence.

Machine learning and algorithms when employed for predictive judgments are also considered by some intelligence practitioners as more art than science. That is, they are prone to biases, noise, and can be accompanied by methodologies that are not sound and lead to errors similar to those found in the criminal forensic sciences and arts.

Russia’s Killer Drone in Ukraine Raises Fears About AI in Warfare

Russia’s Killer Drone in Ukraine Raises Fears About AI in Warfare

A Russian “suicide drone” that boasts the ability to identify targets using artificial intelligence has been spotted in images of the ongoing invasion of Ukraine.

Photographs showing what appears to be the KUB-BLA, a type of lethal drone known as a “loitering munition” sold by ZALA Aero, a subsidiary of the Russian arms company Kalashnikov, have appeared on Telegram and Twitter in recent days. The pictures show damaged drones that appear to have either crashed or been shot down.

With a wingspan of 1.2 meters, the sleek white drone resembles a small pilotless fighter jet. It is fired from a portable launch, can travel up to 130 kilometers per hour for 30 minutes, and deliberately crashes into a target, detonating a 3-kilo explosive.

ZALA Aero, which first demoed the KUB-BLA at a Russian air show in 2019, claims in promotional material that it features “intelligent detection and recognition of objects by class and type in real time.”

The drone itself may do little to alter the course of the war in Ukraine, as there is no evidence that Russia is using them widely so far. But its appearance has sparked concern about the potential for AI to take a greater role in making lethal decisions.

“The notion of a killer robot—where you have artificial intelligence fused with weapons—that technology is here, and it’s being used,” says Zachary Kallenborn, a research affiliate with the National Consortium for the Study of Terrorism and Responses to Terrorism (START).

Advances in AI have made it easier to incorporate autonomy into weapons systems, and have raised the prospect that more capable systems could eventually decide for themselves who to kill. A UN report published last year concluded that a lethal drone with this capability may have been used in the Libyan civil war.

It is unclear if the drone may have been operated in this way in Ukraine. One of the challenges with autonomous weapons may prove to be the difficulty of determining when full autonomy is used in a lethal context, Kallenborn says.

The KUB-BLA images have yet to be verified by official sources, but the drone is known to be a relatively new part of Russia’s military arsenal. Its use would also be consistent with Russia’s shifting strategy in the face of the unexpectedly strong Ukrainian resistance, says Samuel Bendett, an expert on Russia’s military with the defense think tank CNA.

Bendett says Russia has built up its drone capabilities in recent years, using them in Syria and acquiring more after Azerbaijani forces demonstrated their effectiveness against Armenian ground military in the 2020 ​​Nagorno-Karabakh war. “They are an extraordinarily cheap alternative to flying manned missions,” he says. “They are very effective both militarily and of course psychologically.”

The fact that Russia seems to have used few drones in Ukraine early on may be due to misjudging the resistance or because of effective Ukrainian countermeasures.

But drones have also highlighted a key vulnerability in Russia’s invasion, which is now entering its third week. Ukrainian forces have used a remotely operated Turkish-made drone called the TB2 to great effect against Russian forces, shooting guided missiles at Russian missile launchers and vehicles. The paraglider-sized drone, which relies on a small crew on the ground, is slow and cannot defend itself, but it has proven effective against a surprisingly weak Russian air campaign.

Simulation Tech Can Help Predict the Biggest Threats

Simulation Tech Can Help Predict the Biggest Threats

The character of conflict between nations has fundamentally changed. Governments and militaries now fight on our behalf in the “gray zone,” where the boundaries between peace and war are blurred. They must navigate a complex web of ambiguous and deeply interconnected challenges, ranging from political destabilization and disinformation campaigns to cyberattacks, assassinations, proxy operations, election meddling, or perhaps even human-made pandemics. Add to this list the existential threat of climate change (and its geopolitical ramifications) and it is clear that the description of what now constitutes a national security issue has broadened, each crisis straining or degrading the fabric of national resilience.

Traditional analysis tools are poorly equipped to predict and respond to these blurred and intertwined threats. Instead, in 2022 governments and militaries will use sophisticated and credible real-life simulations, putting software at the heart of their decision-making and operating processes. The UK Ministry of Defence, for example, is developing what it calls a military Digital Backbone. This will incorporate cloud computing, modern networks, and a new transformative capability called a Single Synthetic Environment, or SSE.

This SSE will combine artificial intelligence, machine learning, computational modeling, and modern distributed systems with trusted data sets from multiple sources to support detailed, credible simulations of the real world. This data will be owned by critical institutions, but will also be sourced via an ecosystem of trusted partners, such as the Alan Turing Institute.

An SSE offers a multilayered simulation of a city, region, or country, including high-quality mapping and information about critical national infrastructure, such as power, water, transport networks, and telecommunications. This can then be overlaid with other information, such as smart-city data, information about military deployment, or data gleaned from social listening. From this, models can be constructed that give a rich, detailed picture of how a region or city might react to a given event: a disaster, epidemic, or cyberattack or a combination of such events organized by state enemies.

Defense synthetics are not a new concept. However, previous solutions have been built in a standalone way that limits reuse, longevity, choice, and—crucially—the speed of insight needed to effectively counteract gray-zone threats.

National security officials will be able to use SSEs to identify threats early, understand them better, explore their response options, and analyze the likely consequences of different actions. They will even be able to use them to train, rehearse, and implement their plans. By running thousands of simulated futures, senior leaders will be able to grapple with complex questions, refining policies and complex plans in a virtual world before implementing them in the real one.

One key question that will only grow in importance in 2022 is how countries can best secure their populations and supply chains against dramatic weather events coming from climate change. SSEs will be able to help answer this by pulling together regional infrastructure, networks, roads, and population data, with meteorological models to see how and when events might unfold.

Self-Driving Cars: The Complete Guide

Self-Driving Cars: The Complete Guide

In the past decade, autonomous driving has gone from “maybe possible” to “definitely possible” to “inevitable” to “how did anyone ever think this wasn’t inevitable?” to “now commercially available.” In December 2018, Waymo, the company that emerged from Google’s self-driving-car project, officially started its commercial self-driving-car service in the suburbs of Phoenix. At first, the program was underwhelming: available only to a few hundred vetted riders, and human safety operators remained behind the wheel. But in the past four years, Waymo has slowly opened the program to members of the public and has begun to run robotaxis without drivers inside. The company has since brought its act to San Francisco. People are now paying for robot rides.

And it’s just a start. Waymo says it will expand the service’s capability and availability over time. Meanwhile, its onetime monopoly has evaporated. Every significant automaker is pursuing the tech, eager to rebrand and rebuild itself as a “mobility provider. Amazon bought a self-driving-vehicle developer, Zoox. Autonomous trucking companies are raking in investor money. Tech giants like Apple, IBM, and Intel are looking to carve off their slice of the pie. Countless hungry startups have materialized to fill niches in a burgeoning ecosystem, focusing on laser sensors, compressing mapping data, setting up service centers, and more.

This 21st-century gold rush is motivated by the intertwined forces of opportunity and survival instinct. By one account, driverless tech will add $7 trillion to the global economy and save hundreds of thousands of lives in the next few decades. Simultaneously, it could devastate the auto industry and its associated gas stations, drive-thrus, taxi drivers, and truckers. Some people will prosper. Most will benefit. Some will be left behind.

It’s worth remembering that when automobiles first started rumbling down manure-clogged streets, people called them horseless carriages. The moniker made sense: Here were vehicles that did what carriages did, minus the hooves. By the time “car” caught on as a term, the invention had become something entirely new. Over a century, it reshaped how humanity moves and thus how (and where and with whom) humanity lives. This cycle has restarted, and the term “driverless car” may soon seem as anachronistic as “horseless carriage.” We don’t know how cars that don’t need human chauffeurs will mold society, but we can be sure a similar gear shift is on the way.

SelfDriving Cars The Complete Guide

The First Self-Driving Cars

Just over a decade ago, the idea of being chauffeured around by a string of zeros and ones was ludicrous to pretty much everybody who wasn’t at an abandoned Air Force base outside Los Angeles, watching a dozen driverless cars glide through real traffic. That event was the Urban Challenge, the third and final competition for autonomous vehicles put on by Darpa, the Pentagon’s skunkworks arm.

Content

This content can also be viewed on the site it originates from.

At the time, America’s military-industrial complex had already thrown vast sums and years of research trying to make unmanned trucks. It had laid a foundation for this technology, but stalled when it came to making a vehicle that could drive at practical speeds, through all the hazards of the real world. So, Darpa figured, maybe someone else—someone outside the DOD’s standard roster of contractors, someone not tied to a list of detailed requirements but striving for a slightly crazy goal—could put it all together. It invited the whole world to build a vehicle that could drive across California’s Mojave Desert, and whoever’s robot did it the fastest would get a million-dollar prize.

The 2004 Grand Challenge was something of a mess. Each team grabbed some combination of the sensors and computers available at the time, wrote their own code, and welded their own hardware, looking for the right recipe that would take their vehicle across 142 miles of sand and dirt of the Mojave. The most successful vehicle went just seven miles. Most crashed, flipped, or rolled over within sight of the starting gate. But the race created a community of people—geeks, dreamers, and lots of students not yet jaded by commercial enterprise—who believed the robot drivers people had been craving for nearly forever were possible, and who were suddenly driven to make them real.

They came back for a follow-up race in 2005 and proved that making a car drive itself was indeed possible: Five vehicles finished the course. By the 2007 Urban Challenge, the vehicles were not just avoiding obstacles and sticking to trails but following traffic laws, merging, parking, even making safe, legal U-turns.

When Google launched its self-driving car project in 2009, it started by hiring a team of Darpa Challenge veterans. Within 18 months, they had built a system that could handle some of California’s toughest roads (including the famously winding block of San Francisco’s Lombard Street) with minimal human involvement. A few years later, Elon Musk announced Tesla would build a self-driving system into its cars. And the proliferation of ride-hailing services like Uber and Lyft weakened the link between being in a car and owning that car, helping set the stage for a day when actually driving that car falls away too. In 2015, Uber poached dozens of scientists from Carnegie Mellon University—a robotics and artificial intelligence powerhouse—to get its effort going.