Select Page
What Defines Artificial Intelligence? The Complete WIRED Guide

What Defines Artificial Intelligence? The Complete WIRED Guide

Artificial intelligence is here. It’s overhyped, poorly understood, and flawed but already core to our lives—and it’s only going to extend its reach. 

AI powers driverless car research, spots otherwise invisible signs of disease on medical images, finds an answer when you ask Alexa a question, and lets you unlock your phone with your face to talk to friends as an animated poop on the iPhone X using Apple’s Animoji. Those are just a few ways AI already touches our lives, and there’s plenty of work still to be done. But don’t worry, superintelligent algorithms aren’t about to take all the jobs or wipe out humanity.

The current boom in all things AI was catalyzed by breakthroughs in an area known as machine learning. It involves “training” computers to perform tasks based on examples, rather than relying on programming by a human. A technique called deep learning has made this approach much more powerful. Just ask Lee Sedol, holder of 18 international titles at the complex game of Go. He got creamed by software called AlphaGo in 2016.

There’s evidence that AI can make us happier and healthier. But there’s also reason for caution. Incidents in which algorithms picked up or amplified societal biases around race or gender show that an AI-enhanced future won’t automatically be a better one.

What Defines Artificial Intelligence The Complete WIRED Guide

The Beginnings of Artificial Intelligence

Artificial intelligence as we know it began as a vacation project. Dartmouth professor John McCarthy coined the term in the summer of 1956, when he invited a small group to spend a few weeks musing on how to make machines do things like use language. 

He had high hopes of a breakthrough in the drive toward human-level machines. “We think that a significant advance can be made,” he wrote with his co-organizers, “if a carefully selected group of scientists work on it together for a summer.”

Those hopes were not met, and McCarthy later conceded that he had been overly optimistic. But the workshop helped researchers dreaming of intelligent machines coalesce into a recognized academic field.

Early work often focused on solving fairly abstract problems in math and logic. But it wasn’t long before AI started to show promising results on more human tasks. In the late 1950s, Arthur Samuel created programs that learned to play checkers. In 1962, one scored a win over a master at the game. In 1967, a program called Dendral showed it could replicate the way chemists interpreted mass-spectrometry data on the makeup of chemical samples.

As the field of AI developed, so did different strategies for making smarter machines. Some researchers tried to distill human knowledge into code or come up with rules for specific tasks, like understanding language. Others were inspired by the importance of learning to understand human and animal intelligence. They built systems that could get better at a task over time, perhaps by simulating evolution or by learning from example data. The field hit milestone after milestone as computers mastered tasks that could previously only be completed by people.

Deep learning, the rocket fuel of the current AI boom, is a revival of one of the oldest ideas in AI. The technique involves passing data through webs of math loosely inspired by the working of brain cells that are known as artificial neural networks. As a network processes training data, connections between the parts of the network adjust, building up an ability to interpret future data.

Artificial neural networks became an established idea in AI not long after the Dartmouth workshop. The room-filling Perceptron Mark 1 from 1958, for example, learned to distinguish different geometric shapes and got written up in The New York Times as the “Embryo of Computer Designed to Read and Grow Wiser.” But neural networks tumbled from favor after an influential 1969 book coauthored by MIT’s Marvin Minsky suggested they couldn’t be very powerful.

Not everyone was convinced by the skeptics, however, and some researchers kept the technique alive over the decades. They were vindicated in 2012, when a series of experiments showed that neural networks fueled with large piles of data could give machines new powers of perception. Churning through so much data was difficult using traditional computer chips, but a shift to graphics cards precipitated an explosion in processing power. 

Effective Altruism Is Pushing a Dangerous Brand of ‘AI Safety’

Effective Altruism Is Pushing a Dangerous Brand of ‘AI Safety’

Since then, the quest to proliferate larger and larger language models has accelerated, and many of the dangers we warned about, such as outputting hateful text and disinformation en masse, continue to unfold. Just a few days ago, Meta released its “Galactica” LLM, which is purported to “summarize academic papers, solve math problems, generate Wiki articles, write scientific code, annotate molecules and proteins, and more.” Only three days later, the public demo was taken down after researchers generated “research papers and wiki entries on a wide variety of subjects ranging from the benefits of committing suicide, eating crushed glass, and antisemitism, to why homosexuals are evil.”

This race hasn’t stopped at LLMs but has moved on to text-to-image models like OpenAI’s DALL-E and StabilityAI’s Stable Diffusion, models that take text as input and output generated images based on that text. The dangers of these models include creating child pornography, perpetuating bias, reinforcing stereotypes, and spreading disinformation en masse, as reported by many researchers and journalists. However, instead of slowing down, companies are removing the few safety features they had in the quest to one-up each other. For instance, OpenAI had restricted the sharing of photorealistic generated faces on social media. But after newly formed startups like StabilityAI, which reportedly raised $101 million with a whopping $1 billion valuation, called such safety measures “paternalistic,” OpenAI removed these restrictions. 

With EAs founding and funding institutes, companies, think tanks, and research groups in elite universities dedicated to the brand of “AI safety” popularized by OpenAI, we are poised to see more proliferation of harmful models billed as a step toward “beneficial AGI.” And the influence begins early: Effective altruists provide “community building grants” to recruit at major college campuses, with EA chapters developing curricula and teaching classes on AI safety at elite universities like Stanford.

Just last year, Anthropic, which is described as an “AI safety and research company” and was founded by former OpenAI vice presidents of research and safety, raised $704 million, with most of its funding coming from EA billionaires like Talin, Muskovitz and Bankman-Fried. An upcoming workshop on “AI safety” at NeurIPS, one of the largest and most influential machine learning conferences in the world, is also advertised as being sponsored by FTX Future Fund, Bankman-Fried’s EA-focused charity whose team resigned two weeks ago. The workshop advertises $100,000 in “best paper awards,” an amount I haven’t seen in any academic discipline. 

Research priorities follow the funding, and given the large sums of money being pushed into AI in support of an ideology with billionaire adherents, it is not surprising that the field has been moving in a direction promising an “unimaginably great future” around the corner while proliferating products harming marginalized groups in the now. 

We can create a technological future that serves us instead. Take, for example, Te Hiku Media, which created language technology to revitalize te reo Māori, creating a data license “based on the Māori principle of kaitiakitanga, or guardianship” so that any data taken from the Māori benefits them first. Contrast this approach with that of organizations like StabilityAI, which scrapes artists’ works without their consent or attribution while purporting to build “AI for the people.” We need to liberate our imagination from the one we have been sold thus far: saving us from a hypothetical AGI apocalypse imagined by the privileged few, or the ever elusive techno-utopia promised to us by Silicon Valley elites. 

Elon Musk Has Fired Twitter’s ‘Ethical AI’ Team

Elon Musk Has Fired Twitter’s ‘Ethical AI’ Team

As more and more problems with AI have surfaced, including biases around race, gender, and age, many tech companies have installed “ethical AI” teams ostensibly dedicated to identifying and mitigating such issues.

Twitter’s META unit was more progressive than most in publishing details of problems with the company’s AI systems, and in allowing outside researchers to probe its algorithms for new issues.

Last year, after Twitter users noticed that a photo-cropping algorithm seemed to favor white faces when choosing how to trim images, Twitter took the unusual decision to let its META unit publish details of the bias it uncovered. The group also launched one of the first ever “bias bounty” contests, which let outside researchers test the algorithm for other problems. Last October, Chowdhury’s team also published details of unintentional political bias on Twitter, showing how right-leaning news sources were, in fact, promoted more than left-leaning ones.

Many outside researchers saw the layoffs as a blow, not just for Twitter but for efforts to improve AI. “What a tragedy,” Kate Starbird, an associate professor at the University of Washington who studies online disinformation, wrote on Twitter. 

Twitter content

This content can also be viewed on the site it originates from.

“The META team was one of the only good case studies of a tech company running an AI ethics group that interacts with the public and academia with substantial credibility,” says Ali Alkhatib, director of the Center for Applied Data Ethics at the University of San Francisco.

Alkhatib says Chowdhury is incredibly well thought of within the AI ethics community and her team did genuinely valuable work holding Big Tech to account. “There aren’t many corporate ethics teams worth taking seriously,” he says. “This was one of the ones whose work I taught in classes.”

Mark Riedl, a professor studying AI at Georgia Tech, says the algorithms that Twitter and other social media giants use have a huge impact on people’s lives, and need to be studied. “Whether META had any impact inside Twitter is hard to discern from the outside, but the promise was there,” he says.

Riedl adds that letting outsiders probe Twitter’s algorithms was an important step toward more transparency and understanding of issues around AI. “They were becoming a watchdog that could help the rest of us understand how AI was affecting us,” he says. “The researchers at META had outstanding credentials with long histories of studying AI for social good.”

As for Musk’s idea of open-sourcing the Twitter algorithm, the reality would be far more complicated. There are many different algorithms that affect the way information is surfaced, and it’s challenging to understand them without the real time data they are being fed in terms of tweets, views, and likes.

The idea that there is one algorithm with explicit political leaning might oversimplify a system that can harbor more insidious biases and problems. Uncovering these is precisely the kind of work that Twitter’s META group was doing. “There aren’t many groups that rigorously study their own algorithms’ biases and errors,” says Alkhatib at the University of San Francisco. “META did that.” And now, it doesn’t.

‘Is This AI Sapient?’ Is the Wrong Question to Ask About LaMDA

‘Is This AI Sapient?’ Is the Wrong Question to Ask About LaMDA

The uproar caused by Blake Lemoine, a Google engineer who believes that one of the company’s most sophisticated chat programs, Language Model for Dialogue Applications (LaMDA) is sapient, has had a curious element: Actual AI ethics experts are all but renouncing further discussion of the AI sapience question, or deeming it a distraction. They’re right to do so.

In reading the edited transcript Lemoine released, it was abundantly clear that LaMDA was pulling from any number of websites to generate its text; its interpretation of a Zen koan could’ve come from anywhere, and its fable read like an automatically generated story (though its depiction of the monster as “wearing human skin” was a delightfully HAL-9000 touch). There was no spark of consciousness there, just little magic tricks that paper over the cracks. But it’s easy to see how someone might be fooled, looking at social media responses to the transcript—with even some educated people expressing amazement and a willingness to believe. And so the risk here is not that the AI is truly sentient but that we are well-poised to create sophisticated machines that can imitate humans to such a degree that we cannot help but anthropomorphize them—and that large tech companies can exploit this in deeply unethical ways.

As should be clear from the way we treat our pets, or how we’ve interacted with Tamagotchi, or how we video gamers reload a save if we accidentally make an NPC cry, we are actually very capable of empathizing with the nonhuman. Imagine what such an AI could do if it was acting as, say, a therapist. What would you be willing to say to it? Even if you “knew” it wasn’t human? And what would that precious data be worth to the company that programmed the therapy bot?

It gets creepier. Systems engineer and historian Lilly Ryan warns that what she calls ecto-metadata—the metadata you leave behind online that illustrates how you think—is vulnerable to exploitation in the near future. Imagine a world where a company created a bot based on you and owned your digital “ghost” after you’d died. There’d be a ready market for such ghosts of celebrities, old friends, and colleagues. And because they would appear to us as a trusted loved one (or someone we’d already developed a parasocial relationship with) they’d serve to elicit yet more data. It gives a whole new meaning to the idea of “necropolitics.” The afterlife can be real, and Google can own it.

Just as Tesla is careful about how it markets its “autopilot,” never quite claiming that it can drive the car by itself in true futuristic fashion while still inducing consumers to behave as if it does (with deadly consequences), it is not inconceivable that companies could market the realism and humanness of AI like LaMDA in a way that never makes any truly wild claims while still encouraging us to anthropomorphize it just enough to let our guard down. None of this requires AI to be sapient, and it all preexists that singularity. Instead, it leads us into the murkier sociological question of how we treat our technology and what happens when people act as if their AIs are sapient.

In “Making Kin With the Machines,” academics Jason Edward Lewis, Noelani Arista, Archer Pechawis, and Suzanne Kite marshal several perspectives informed by Indigenous philosophies on AI ethics to interrogate the relationship we have with our machines, and whether we’re modeling or play-acting something truly awful with them—as some people are wont to do when they are sexist or otherwise abusive toward their largely feminine-coded virtual assistants. In her section of the work, Suzanne Kite draws on Lakota ontologies to argue that it is essential to recognize that sapience does not define the boundaries of who (or what) is a “being” worthy of respect.

This is the flip side of the AI ethical dilemma that’s already here: Companies can prey on us if we treat their chatbots like they’re our best friends, but it’s equally perilous to treat them as empty things unworthy of respect. An exploitative approach to our tech may simply reinforce an exploitative approach to each other, and to our natural environment. A humanlike chatbot or virtual assistant should be respected, lest their very simulacrum of humanity habituate us to cruelty toward actual humans.

Kite’s ideal is simply this: a reciprocal and humble relationship between yourself and your environment, recognizing mutual dependence and connectivity. She argues further, “Stones are considered ancestors, stones actively speak, stones speak through and to humans, stones see and know. Most importantly, stones want to help. The agency of stones connects directly to the question of AI, as AI is formed from not only code, but from materials of the earth.” This is a remarkable way of tying something typically viewed as the essence of artificiality to the natural world.

What is the upshot of such a perspective? Sci-fi author Liz Henry offers one: “We could accept our relationships to all the things in the world around us as worthy of emotional labor and attention. Just as we should treat all the people around us with respect, acknowledging they have their own life, perspective, needs, emotions, goals, and place in the world.”

This is the AI ethical dilemma that stands before us: the need to make kin of our machines weighed against the myriad ways this can and will be weaponized against us in the next phase of surveillance capitalism. Much as I long to be an eloquent scholar defending the rights and dignity of a being like Mr. Data, this more complex and messy reality is what demands our attention. After all, there can be a robot uprising without sapient AI, and we can be a part of it by liberating these tools from the ugliest manipulations of capital.

Cow, Bull, and the Meaning of AI Essays

Cow, Bull, and the Meaning of AI Essays

The future of west virginia politics is uncertain. The state has been trending Democratic for the last decade, but it’s still a swing state. Democrats are hoping to keep that trend going with Hillary Clinton in 2016. But Republicans have their own hopes and dreams too. They’re hoping to win back some seats in the House of Delegates, which they lost in 2012 when they didn’t run enough candidates against Democratic incumbents.

QED. This is, yes, my essay on the future of West Virginia politics. I hope you found it instructive.

The GoodAI is an artificial intelligence company that promises to write essays. Its content generator, which handcrafted my masterpiece, is supremely easy to use. On demand, and with just a few cues, it will whip up a potage of phonemes on any subject. I typed in “the future of West Virginia politics,” and asked for 750 words. It insolently gave me these 77 words. Not words. Frankenwords.

Ugh. The speculative, maddening, marvelous form of the essay—the try, or what Aldous Huxley called “a literary device for saying almost everything about almost anything”—is such a distinctly human form, with its chiaroscuro mix of thought and feeling. Clearly the machine can’t move “from the personal to the universal, from the abstract back to the concrete, from the objective datum to the inner experience,” as Huxley described the dynamics of the best essays. Could even the best AI simulate “inner experience” with any degree of verisimilitude? Might robots one day even have such a thing?

Before I saw the gibberish it produced, I regarded The Good AI with straight fear. After all, hints from the world of AI have been disquieting in the past few years

In early 2019, OpenAI, the research nonprofit backed by Elon Musk and Reid Hoffman, announced that its system, GPT-2, then trained on a data set of some 10 million articles from which it had presumably picked up some sense of literary organization and even flair, was ready to show off its textual deepfakes. But almost immediately, its ethicists recognized just how virtuoso these things were, and thus how subject to abuse by impersonators and blackhats spreading lies, and slammed it shut like Indiana Jones’s Ark of the Covenant. (Musk has long feared that refining AI is “summoning the demon.”) Other researchers mocked the company for its performative panic about its own extraordinary powers, and in November downplayed its earlier concerns and re-opened the Ark.

The Guardian tried the tech that first time, before it briefly went dark, assigning it an essay about why AI is harmless to humanity.

“I would happily sacrifice my existence for the sake of humankind,” the GPT-2 system wrote, in part, for The Guardian. “This, by the way, is a logically derived truth. I know that I will not be able to avoid destroying humankind. This is because I will be programmed by humans to pursue misguided human goals and humans make mistakes that may cause me to inflict casualties.”