Select Page
Merch by Amazon German and English Marketplace Data Added – See The Best Sellers For Each Market

Merch by Amazon German and English Marketplace Data Added – See The Best Sellers For Each Market

Merch by Amazon German and English Marketplace Data Added – See The Best Sellers For Each Market

We have been working hard behind the scenes to make some pretty big upgrades to Merch Informer!

Many of these things are specifically what the community has asked for, and in our attempt to make sure that every Mercher has the best possible tools at their disposal, we have added them all to the Merch Informer modules.

So without further ado, lets go over what has changed!

Revamped International Database

Since Merch Informer has launched we have followed closely with the updates that Merch by Amazon has made to their platform. We quickly adopted search when the UK and DE markets were launched to aid sellers in these new market places.

However, since half our team is from the USA and the other half is from a country that does not have a merch marketplace (yet), the focus still remained on the US market. The US market is where the majority of the sales occur, where most of the buyers are, and where most of the sellers are!

Since Amazon updated their create tool to automatically push products to both the new marketplaces, we decided we needed to revamp our international database.

There are now 2,000,000+ new results for the UK and DE database alone and growing everyday.

This means that you as a seller now have access to more details than ever before!

Merch Hunter Update

The Merch Hunter (if you are not aware), is a recreation of Merch by Amazon to display the BEST selling designs at any given point. This is often used to figure out what trends are hot right now, what customers are spending their money on, and basically just have a pulse on the Merch by Amazon heart beat.

Today, we have updated the Merch Hunter to not only include t-shirts, but the other products that are available in those locales.

To see how this works, simply log in to your account (or grab a 3 day free trial) and head to the Merch Hunter.

Use the drop down menu to select a marketplace.

Then select your other parameters such as how many best sellers you want to look at, what sales rank range, what price range, and then finally, what category.

As you can see, I have selected the DE market (Germany), and the products offered there are now shown:

Click on search, and just like that, you have a list of where German customers are ACTUALLY spending their money so that YOU can come up with unique designs and phrases that they want to purchase.

This will work for both the UK and DE with lots of information on each shirt as well as the estimated moving average sales. This is a great metric to take a look at to see how customers are behaving over time!

Movers and Shakers / Trend Tracker Modules Now Include The International Marketplaces

Do you want to find trends right as they are hitting or slightly before an event skyrockets?

This is what the movers and shakers module is for!

Recently, it was just for the US Markets to check daily, weekly, and monthly sales charts to see which had the biggest drop (meaning a shirt has began to sell).

No longer!

The movers and shakers now includes the UK and DE marketplaces for t-shirts!

On the flip side, if you are more interested in what is CONSISTENTLY selling, pulling in money every day, and what customers are buying day in and day out, then you have to check out the trend tracker.

What this module will do is look at a time period, and a sales rank range, and show you designs that have consistently remained in that sales range over that period of time.

We have also updated this to now include both the UK and DE locales!

As you can see, I selected a period of 2 months with an average sales rank up to 100k in the DE marketplace.

Hit search and you can see what shirts have been selling consistently in this range for the last 2 months (what I selected in the parameters).

Merch Archive Turned On Internationally!

One of my most used features inside of Merch Informer personally has been the Merch Archive which is invaluable for finding out what customers were spending a year ago during a holiday or an event. This is also a great way to check seasonality of different niches.

It is basically a calendar to show you the top 500 results that were selling on Merch by Amazon on a given date. This allows you to look back in time!

We have now just enabled access to both the UK and DE marketplaces moving forward. So that means starting today and going forward, this information will be available. The longer this is available, the more useful it will get!

Next Halloween season, you can look back at this feature and know exactly what people were buying!

This makes seasonal and holiday research simple as pie so you can come up with your own unique designs and phrases in the niches that ACTUALLY make money!

Advanced Competition Checker Now International

When it comes to checking competition, the advanced competition checker is a great place to start.

This module will tell you (based on a keyword or phrase) the:

  • estimated product count with phrase in title
  • Estimated product count with phrase in features
  • Estimated product count with phrase in description
  • Estimated merch count with phrase in their brand name
  • Score from A-E (E being harder to rank for than F)

Then below this information it will show you some of the best sellers for that keyword in the market so you can see again, what customers are spending their money on!

Previously this was just for the US market, but it is now available for both the UK and DE marketplace!

Favorites Module Update

When it comes down to doing research, we often find ourselves revisiting old designs, digging up products in different ways, and need a quick way to reference these in the future.

This is the basis of the favorites module. You create a category tree for your research, and stuff designs in it!

Previously, you could only add favorites from either the product search or the merch hunter.

We have heard you, and today we updated this feature!

You can now add favorites from the Merch Archive, Movers and Shakers, and the Trend Tracker.

To do this, first head to your favorites and create a new category (make sure to hit save).

Then, when you are doing your research in say… the Merch Archive, all you need to do is click on the heart button under neither the design:

After that, it will pop up a screen to allow you to save it in one of the categories that you have created in the favorites module:

Once you select the category to save it to, it will be in your favorites and will be marked by a red heart:

The same thing works for the Trend Tracker:

And the Movers and Shakers module of course!

Wrapping It Up

This basically wraps up this massive update that we have been working on behind the scenes.

This should open up a LOT more opportunities in these international markets as well as make your research just a little bit easier with the additional update we pushed to the favorites module.

Until next time, keep uploading great unique designs in niches that SELL!

The WIRED Guide to Cyberwar

The WIRED Guide to Cyberwar

Hacking didn’t need to be confined to some tactic on the periphery of war: Cyberattacks could themselves be a weapon of war. It was perhaps that definition of cyberwar that President Bill Clinton had in mind in 2001 when he warned in a speech that “today, our critical systems, from power structures to air traffic control, are connected and run by computers” and that someone can sit at the same computer, hack into a computer system, and potentially paralyze a company, a city, or a government.”

Since then, that definition for cyberwar has been honed into one that was perhaps most clearly laid out in the 2010 book Cyber War, cowritten by Richard Clarke, a national security advisor to Presidents Bush, Clinton, and Bush, and Robert Knake, who would later serve as a cybersecurity advisor to President Obama. Clarke and Knake defined cyberwar as “actions by a nation-state to penetrate another nation’s computers or networks for the purpose of causing damage or disruption.” Put more simply, that definition roughly encompasses the same things we’ve always identified as “acts of war,” only now carried out by digital means. But as the world was learning by the time Clarke and Knake wrote that definition, digital attacks have the potential to reach out beyond mere computers to have real, physical consequences.

Proto-Cyberwars

The first major historical event that could credibly fit Clarke and Knake’s definition—what some have dubbed “Web War I”—had arrived just a few years earlier. It hit one of the world’s most wired countries: Estonia.

In the the spring of 2007, an unprecedented series of so-called distributed denial of service, or DDoS, attacks slammed more than a hundred Estonian websites, taking down the country’s online banking, digital news media, government sites, and practically anything else that had a web presence. The attacks were a response to the Estonian government’s decision to move a Soviet-era statue out of a central location in the capital city of Tallinn, angering the country’s Russian-speaking minority and triggering protests on the city’s streets and the web.

As the sustained cyberattacks wore on for weeks, however, it became clear that they were no mere cyberriots: The attacks were coming from botnets—collections of PCs around the world hijacked with malware—that belonged to organized Russian cybercriminal groups. Some of the attacks’ sources even overlapped with earlier DDoS attacks that had a clear political focus, including attacks that hit the website of Gary Kasparov, the Russian chess champion and opposition political leader. Today security analysts widely believe that the attacks were condoned by the Kremlin, if not actively coordinated by its leaders.

By the next year, that Russian government link to politically motivated cyberattacks was becoming more apparent. Another, very similar series of DDoS attacks struck dozens of websites in another Russian neighbor, Georgia. This time they accompanied an actual physical invasion—a Russian intervention to “protect” Russia-friendly separatists within Georgia’s borders—complete with tanks rolling toward the Georgian capital and a Russian fleet blockading the country’s coastline on the Black Sea. In some cases, digital attacks would hit web targets associated with specific towns just ahead of military forces’ arrival, another suggestion of coordination.

The 2008 Georgian war was perhaps the first real hybrid war in which conventional military and hacker forces were combined. But given Georgia’s low rate of internet adoption—about 7 percent of Georgians used the internet at the time—and Russia’s relatively simplistic cyberattacks, which merely tore down and defaced websites, it stands as more of a historic harbinger of cyberwar than the real thing.

First Shots

The world’s conception of cyberwar changed forever in 2010. It started when VirusBlokAda, a security firm in Belarus, found a mysterious piece of malware that crashed the computers running its antivirus software. By September of that year, the security research community had come to the shocking conclusion that the specimen of malware, dubbed Stuxnet, was in fact the most sophisticated piece of code ever engineered for a cyberattack, and that it was specifically designed to destroy the centrifuges used in Iran’s nuclear enrichment facilities. (That detective work is best captured in Kim Zetter’s definitive book Countdown to Zero Day.) It would be nearly two more years before The New York Times confirmed that Stuxnet was a creation of the NSA and Israeli intelligence, intended to hamstring Iran’s attempts to build a nuclear bomb.

Over the course of 2009 and 2010, Stuxnet had destroyed more than a thousand of the six-and-a-half-foot-tall aluminum centrifuges installed in Iran’s underground nuclear enrichment facility in Natanz, throwing the facility into confusion and chaos. After spreading through the Iranians’ network, it had injected commands into the so-called programmable logic controllers, or PLCs, that governed the centrifuges, speeding them up or manipulating the pressure inside them until they tore themselves apart. Stuxnet would come to be recognized as the first cyberattack ever designed to directly damage physical equipment, and an act of cyberwar that has yet to be replicated in its virtuosic destructive effects. It would also serve as the starting pistol shot for the global cyber arms race that followed.

Iran soon entered that arms race, this time as aggressor rather than target. In August of 2012, the Saudi Arabian firm Saudi Aramco, one of the world’s largest oil producers, was hit with a piece of malware known as Shamoon that wiped 35,000 of the company’s computers—about three-quarters of them—leaving its operations essentially paralyzed. On the screens of the crippled machines, the malware left an image of a burning American flag. A group calling itself “Cutting Sword of Justice” claimed credit for the attack as an activist statement, but cybersecurity analysts quickly suspected that Iran was ultimately responsible, and had used the Saudis as a proxy target in retaliation for Stuxnet.

What Is Cyberwar? The Complete WIRED Guide

What Is Cyberwar? The Complete WIRED Guide

Not so long ago, stories about cyberwar started with scary hypotheticals: What if state-sponsored hackers were to launch widespread attacks that blacked out entire cities? Crippled banks and froze ATMs across a country? Shut down shipping firms, oil refineries, and factories? Paralyzed airports and hospitals?

Today, these scenarios are no longer hypotheticals: Every one of those events has now actually occurred. Incident by catastrophic incident, cyberwar has left the pages of overblown science fiction and the tabletops of Pentagon war games to become a reality. More than ever before, it’s become clear that the threat of hacking goes beyond nuisance vandalism, criminal profiteering, and even espionage to include the sort of physical-world disruption that was once possible to accomplish only with military attacks and terroristic sabotage.

So far, there’s no clearly documented case of a cyberwar attack directly causing loss of life. But a single cyberwar attack has already caused as much as $10 billion dollars in economic damage. Cyberwar has been used to terrorize individual companies and temporarily render entire governments comatose. It’s denied civilians of basic services like power and heat—if only briefly, so far—as well as longer-term deprivations of transportation and access to currency. Most disturbingly, cyberwar seems to be evolving in the hands of countries like Iran, North Korea, and Russia as they advance new disruptive and destructive cyberattack techniques. (The US and the rest of the English-speaking Five Eyes nations likely possess the most advanced cyberwar capabilities in the world, but have by all appearances shown more restraint than those other cyberwar actors in recent years.)

All of which means the threat of cyberwar looms heavily over the future: a new dimension of conflict capable of leapfrogging borders and teleporting the chaos of war to civilians thousands of miles beyond its front.

What Is Cyberwar The Complete WIRED Guide

The History (and Meaning) of Cyberwar

To understand the unique threat cyberwar poses to civilization, it’s worth first understanding exactly how the word has come to be defined. The term cyberwar has, after all, gone through decades of evolution—well chronicled in Thomas Rid’s history of all things cyber, Rise of the Machines—which has muddied its meaning: It first appeared in a 1987 Omni magazine article that described future wars fought with giant robots, autonomous flying vehicles, and autonomous weapons systems. But that Terminator-style idea of robotic cyberwar gave way in the 1990s to one that focused more on computers and the internet, which were increasingly transforming human life: A 1993 article by two analysts at the think tank RAND titled “Cyberwar Is Coming!” described how military hackers would soon be used not only for reconnaissance and spying on enemy systems but also attacking and disrupting the computers an enemy used for command-and-control.

This image may contain Text Graphics Art and Label

A couple of years later, however, RAND analysts would start to realize that military hackers wouldn’t necessarily limit their disruptive attacks to military computers. They might just as easily attack the computerized and automated elements of an enemy’s critical infrastructure, with potentially disastrous consequences for civilians: In a world increasingly reliant on computers, that could mean debilitating sabotage against railways, stock exchanges, airlines, and even the electric grid that underpins so many of those vital systems.

Hacking didn’t need to be confined to some tactic on the periphery of war: Cyberattacks could themselves be a weapon of war. It was perhaps that definition of cyberwar that President Bill Clinton had in mind in 2001 when he warned in a speech that “today, our critical systems, from power structures to air traffic control, are connected and run by computers” and that someone can sit at the same computer, hack into a computer system, and potentially paralyze a company, a city, or a government.”

Since then, that definition for cyberwar has been honed into one that was perhaps most clearly laid out in the 2010 book Cyber War, cowritten by Richard Clarke, a national security advisor to Presidents Bush, Clinton, and Bush, and Robert Knake, who would later serve as a cybersecurity advisor to President Obama. Clarke and Knake defined cyberwar as “actions by a nation-state to penetrate another nation’s computers or networks for the purpose of causing damage or disruption.” Put more simply, that definition roughly encompasses the same things we’ve always identified as “acts of war,” only now carried out by digital means. But as the world was learning by the time Clarke and Knake wrote that definition, digital attacks have the potential to reach out beyond mere computers to have real, physical consequences.

Proto-Cyberwars

The first major historical event that could credibly fit Clarke and Knake’s definition—what some have dubbed “Web War I”—had arrived just a few years earlier. It hit one of the world’s most wired countries: Estonia.

In the the spring of 2007, an unprecedented series of so-called distributed denial of service, or DDoS, attacks slammed more than a hundred Estonian websites, taking down the country’s online banking, digital news media, government sites, and practically anything else that had a web presence. The attacks were a response to the Estonian government’s decision to move a Soviet-era statue out of a central location in the capital city of Tallinn, angering the country’s Russian-speaking minority and triggering protests on the city’s streets and the web.

As the sustained cyberattacks wore on for weeks, however, it became clear that they were no mere cyberriots: The attacks were coming from botnets—collections of PCs around the world hijacked with malware—that belonged to organized Russian cybercriminal groups. Some of the attacks’ sources even overlapped with earlier DDoS attacks that had a clear political focus, including attacks that hit the website of Gary Kasparov, the Russian chess champion and opposition political leader. Today security analysts widely believe that the attacks were condoned by the Kremlin, if not actively coordinated by its leaders.

By the next year, that Russian government link to politically motivated cyberattacks was becoming more apparent. Another, very similar series of DDoS attacks struck dozens of websites in another Russian neighbor, Georgia. This time they accompanied an actual physical invasion—a Russian intervention to “protect” Russia-friendly separatists within Georgia’s borders—complete with tanks rolling toward the Georgian capital and a Russian fleet blockading the country’s coastline on the Black Sea. In some cases, digital attacks would hit web targets associated with specific towns just ahead of military forces’ arrival, another suggestion of coordination.

The WIRED Guide to the Blockchain

The WIRED Guide to the Blockchain

Depending on who you ask, blockchains are either the most important technological innovation since the internet or a solution looking for a problem.

The original blockchain is the decentralized ledger behind the digital currency bitcoin. The ledger consists of linked batches of transactions known as blocks (hence the term blockchain), and an identical copy is stored on each of the roughly 60,000 computers that make up the bitcoin network. Each change to the ledger is cryptographically signed to prove that the person transferring virtual coins is the actual owner of those coins. But no one can spend their coins twice, because once a transaction is recorded in the ledger, every node in the network will know about it.

The idea is to both keep track of how each unit of the virtual currency is spent and prevent unauthorized changes to the ledger. The upshot: No bitcoin user has to trust anyone else, because no one can cheat the system.

Other digital currencies have imitated this basic idea, often trying to solve perceived problems with bitcoin by building new cryptocurrencies on new blockchains. But advocates have seized on the idea of a decentralized, cryptographically secure database for uses beyond currency. Its biggest boosters believe blockchains can not only replace central banks but usher in a new era of online services that would be impossible to censor. These new-age apps, advocates say, would be more answerable to users and outside the control of internet giants like Google and Facebook.

Unless, of course, Facebook runs away with the idea itself. In June, Facebook announced Libra, a new blockchain that will support a digital currency. Unlike the thousands of anybodys who run Bitcoin nodes, it will be controlled by an association comprised of just 100 companies and NGOs. Libra is certainly a challenge to central banks, not least because it’s a privately controlled monetary system that will span the globe. But replacing government with corporations is not exactly the revolution that enthusiasts imagined blockchain would bring. So far, the crypto community is divided on whether Libra is a good thing. Some see Facebook’s effort as a corruption of a technology designed to ensure that you don’t need to trust your fellow users—or any central authority. Others are celebrating it as the moment that blockchain goes mainstream.

Other so-called “private” blockchains, like Libra, are growing in popularity. Big financial services companies, including JP Morgan and the Depository Trust & Clearing Corporation, are experimenting with blockchains and blockchain-like technologies to improve the efficiency of trading stocks and other assets. Traders buy and sell stocks rapidly using current technology, of course, but the behind-the-scenes process of transferring ownership of those assets can take days. Some technologists believe blockchains could help with that.

Blockchains also have potential applications in the seemingly boring world of corporate compliance. After all, storing records in an immutable ledger is a pretty good way to assure auditors that those records haven’t been tampered with. This might be good for more than just catching embezzlers or tax cheats. Walmart, for example, is using an IBM-developed blockchain to track its supply chain, which could help it trace the source of food contaminants. Many other experiments have emerged: Voting on the blockchain. Land records. Used cars. Real estate. Streaming content. Hence the phrase “xxx on the blockchain” as a catch-all for the enduring hype cycle. The question is, if one organization (say, Walmart) has control of the data, did it really need blockchain at all?

It’s too early to say which experiments will stick. But the idea of creating tamper-proof databases has captured the attention of everyone from anarchist techies to staid bankers.

What Is Blockchain The Complete WIRED Guide

The First Blockchain

The original bitcoin software was released to the public in January 2009. It was open source software, meaning anyone could examine the code and reuse it. And many have. At first, blockchain enthusiasts sought to simply improve on bitcoin. Litecoin, another virtual currency based on the bitcoin software, seeks to offer faster transactions.

One of the first projects to repurpose the bitcoin code to use it for more than currency was Namecoin, a system for registering “.bit” domain names. The traditional domain-name management system—the one that helps your computer find our website when you type wired.com—depends on a central database, essentially an address book for the internet. Internet-freedom activists have long worried that this traditional approach makes censorship too easy, because governments can seize a domain name by forcing the company responsible for registering it to change the central database. The US government has done this several times to shut sites accused of violating gambling or intellectual-property laws.

What Is Blockchain? The Complete WIRED Guide

What Is Blockchain? The Complete WIRED Guide

Depending on who you ask, blockchains are either the most important technological innovation since the internet or a solution looking for a problem.

The original blockchain is the decentralized ledger behind the digital currency bitcoin. The ledger consists of linked batches of transactions known as blocks (hence the term blockchain), and an identical copy is stored on each of the roughly 60,000 computers that make up the bitcoin network. Each change to the ledger is cryptographically signed to prove that the person transferring virtual coins is the actual owner of those coins. But no one can spend their coins twice, because once a transaction is recorded in the ledger, every node in the network will know about it.

The idea is to both keep track of how each unit of the virtual currency is spent and prevent unauthorized changes to the ledger. The upshot: No bitcoin user has to trust anyone else, because no one can cheat the system.

Other digital currencies have imitated this basic idea, often trying to solve perceived problems with bitcoin by building new cryptocurrencies on new blockchains. But advocates have seized on the idea of a decentralized, cryptographically secure database for uses beyond currency. Its biggest boosters believe blockchains can not only replace central banks but usher in a new era of online services that would be impossible to censor. These new-age apps, advocates say, would be more answerable to users and outside the control of internet giants like Google and Facebook.

Unless, of course, Facebook runs away with the idea itself. In June, Facebook announced Libra, a new blockchain that will support a digital currency. Unlike the thousands of anybodys who run Bitcoin nodes, it will be controlled by an association comprised of just 100 companies and NGOs. Libra is certainly a challenge to central banks, not least because it’s a privately controlled monetary system that will span the globe. But replacing government with corporations is not exactly the revolution that enthusiasts imagined blockchain would bring. So far, the crypto community is divided on whether Libra is a good thing. Some see Facebook’s effort as a corruption of a technology designed to ensure that you don’t need to trust your fellow users—or any central authority. Others are celebrating it as the moment that blockchain goes mainstream.

Other so-called “private” blockchains, like Libra, are growing in popularity. Big financial services companies, including JP Morgan and the Depository Trust & Clearing Corporation, are experimenting with blockchains and blockchain-like technologies to improve the efficiency of trading stocks and other assets. Traders buy and sell stocks rapidly using current technology, of course, but the behind-the-scenes process of transferring ownership of those assets can take days. Some technologists believe blockchains could help with that.

Blockchains also have potential applications in the seemingly boring world of corporate compliance. After all, storing records in an immutable ledger is a pretty good way to assure auditors that those records haven’t been tampered with. This might be good for more than just catching embezzlers or tax cheats. Walmart, for example, is using an IBM-developed blockchain to track its supply chain, which could help it trace the source of food contaminants. Many other experiments have emerged: Voting on the blockchain. Land records. Used cars. Real estate. Streaming content. Hence the phrase “xxx on the blockchain” as a catch-all for the enduring hype cycle. The question is, if one organization (say, Walmart) has control of the data, did it really need blockchain at all?

It’s too early to say which experiments will stick. But the idea of creating tamper-proof databases has captured the attention of everyone from anarchist techies to staid bankers.

What Is Blockchain The Complete WIRED Guide

The First Blockchain

The original bitcoin software was released to the public in January 2009. It was open source software, meaning anyone could examine the code and reuse it. And many have. At first, blockchain enthusiasts sought to simply improve on bitcoin. Litecoin, another virtual currency based on the bitcoin software, seeks to offer faster transactions.

One of the first projects to repurpose the bitcoin code to use it for more than currency was Namecoin, a system for registering “.bit” domain names. The traditional domain-name management system—the one that helps your computer find our website when you type wired.com—depends on a central database, essentially an address book for the internet. Internet-freedom activists have long worried that this traditional approach makes censorship too easy, because governments can seize a domain name by forcing the company responsible for registering it to change the central database. The US government has done this several times to shut sites accused of violating gambling or intellectual-property laws.

Namecoin tries to solve this problem by storing .bit domain registrations in a blockchain, which theoretically makes it impossible for anyone without the encryption key to change the registration information. To seize a .bit domain name, a government would have to find the person responsible for the site and force them to hand over the key.

In 2013, a startup called Ethereum published a paper outlining an idea that promised to make it easier for coders to create their own blockchain-based software without having to start from scratch, without relying on the original bitcoin software. In 2015 the company released its platform for building “smart contracts,” software applications that can enforce an agreement without human intervention. For example, you could create a smart contract to bet on tomorrow’s weather. You and your gambling partner would upload the contract to the Ethereum network and then send a little digital currency, which the software would essentially hold in escrow. The next day, the software would check the weather and then send the winner their earnings. A number of “prediction markets” have been built on the platform, enabling people to bet on more interesting outcomes, such as which political party will win an election.

So long as the software is written correctly, there’s no need to trust anyone in these transactions. But that turns out to be a big catch. In 2016, a hacker made off with about $50 million worth of Ethereum’s custom currency intended for a democratized investment scheme where investors would pool their money and vote on how to invest it. A coding error allowed a still unknown person to make off with the virtual cash. Lesson: It’s hard to remove humans from transactions, with or without a blockchain.

The WIRED Guide to Aliens

The WIRED Guide to Aliens

Despite the magnitude of that potential finding, federal science has mostly left SETI out of its spreadsheets for decades. But in a 2018 reversal, NASA hosted a workshop to determine how best to search for alien technology. And outside of that support, scientists have also started a slew of new projects, and begun training more fledgling researchers. The alien hunt, in other words, is having a bit of a moment.

The WIRED Guide to Aliens

The History of the Hunt for Aliens

It all began in the middle of nowhere: Green Bank, West Virginia. The site’s remoteness is precisely why, in the 1950s, astronomers decided to build radio telescopes way out here, far from the contaminating influence of human technology. One of Green Bank’s early employees was a man named Frank Drake. Drake, like many scientists, read a 1959 Nature paper by physicists Guiseppe Cocconi and Philip Morrison, who suggested that if a person wanted to find intelligent aliens (here, “intelligent” means capable of using technology to transmit an identifiable signal) they might try picking up radio broadcasts, and they suggested a range of frequencies scientists could search. This fired Drake up, and in 1960 the observatory’s director agreed to let him point an 85-foot telescope at two sun-esque stars, tuning it in to the kinds of transmissions that could come from technology and not from stars, gas, or galaxies.

It didn’t, but the effort, called Project Ozma, kicked off the modern SETI enterprise. A year later, Green Bank hosted a secret National Academy of Sciences meeting at which Drake presented the now-famous and now-eponymous Drake Equation. It posits that if you know how often stars are born in the galaxy, what percentage have planets, what number of those planets are habitable, what fraction of habitable planets are inhabited, what fraction of inhabitants are intelligent, what fraction develop interstellar communication, and how long technologically intelligent civilizations survive, you could figure out how many extraterrestrial societies await your discovery. It was never meant to be be precise math: It was just a meeting agenda.

Around a decade later, NASA convened a study called “Project Cyclops.” In it, scientists laid out what alien contact might look like and how, engineering-wise, they might accomplish it. They devised a hypothetical radio telescope made of many antennas that work together as one. While at full scale, it would be cost between $36 billion and $60 billion in 2018 dollars, the attendees suggested it be made in modular fashion—a few antennas here, check for aliens. No aliens? Add a few more, look some more. Still nothing? Break ground again. Etc.

The project never happened, but it did inspire Berkeley professor Stuart Bowyer and Berkeley student Jill Tarter to start a smaller-scale program called SERENDIP: the Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations. Berkeley now has a SETI Research Center, and SERENDIP still exists—in its sixth iteration, using both the Green Bank Telescope and the Arecibo telescope in Puerto Rico. Since the turn of the century, the program has also let you help process data through the SETI@Home program, which uses your idle CPU to hunt for potential communications.

In the 70s, Ohio State started a SETI project at its Big Ear Observatory, and caught the famous WOW! Signal—a mysterious burst of radio waves that has captured attention for decades but, sorry, is not aliens. For a while, NASA had a nascent SETI program, and when it officially began operations in 1992, astronomers had good reason to hope for a “hello” from light-years away: Around this time, scientists discovered the first-ever planet beyond our solar system, around a pulsar, and would soon find another one, this time orbiting a star like the Sun. All those aliens, turns out, might have at least a few places to live. Plus, back on Earth, scientists were learning more about the badass microbes that live in hot, cold, acidic, basic, salty, radioactive, and just generally unpleasant spots. If life could find a way in all that mess, why not around Zeta Reticuli?

But politicians did not always favor pursuit of such extraterrestrials, extremophile and/or intelligent and/or otherwise. And the next year, Congress voted to terminate the NASA project’s funding.

Since then—a little more than 25 years ago—NASA has had no SETI programs. Scientists, though, aren’t easy to stop—especially not when the end result of their quest could be some kind of cosmic salvation. And so the former NASA team privatized their efforts, and began a program called Project Phoenix, backed by some of Silicon Valley’s early tycoons. For nine years, from 1995-2004, they did the work they’d planned to do under NASA’s banner on their own terms, through the nonprofit SETI Institute. From Arecibo, Green Bank, Jodrell Bank Observatory in England, and the Parkes radio telescope in Australia, they sought after radio broadcasts from the great beyond.