Select Page
What Is the Internet of Things? A WIRED Guide

What Is the Internet of Things? A WIRED Guide

Most of the early smart home inventions used automatic controls, making it possible to turn something or off without lifting a finger. But they didn’t connect to anything else, and their functionality was limited. That would begin to change in 1983 when ARPANET, the earliest version of the internet, adopted the internet protocol suite (also known as TCP/IP). The protocol set standards for how digital data should be transmitted, routed, and received. Essentially, it laid the groundwork for the modern internet.

The first internet-connected “thing” to make use of this new protocol was a toaster. John Romkey, a software engineer and early internet evangelist, had built one for the 1990 showfloor of Interop, a trade show for computers. Romkey dropped a few slices of bread into the toaster and, using a clunky computer, turned the toaster on. It would still be a decade before anyone used the phrase “internet of things,” but Romkey’s magic little toaster showed what a world of internet-connected things might be like. (Of course, it wasn’t fully automated; a person still had to introduce the bread.) It was part gimmick, part proof of concept—and fully a preview of what was to come.

The term “internet of things” itself was coined in 1999, when Kevin Ashton put it in a PowerPoint presentation for Procter & Gamble. Ashton, who was then working in supply chain optimization, described a system where sensors acted like the eyes and ears of a computer—an entirely new way for computers to see, hear, touch, and interpret their surroundings.

As home internet became ubiquitous and Wi-Fi sped up, the dream of the smart home started to look more like a reality. Companies began to introduce more and more of these inventions: “smart” coffee makers to brew the perfect cup, ovens that bake cookies with precision timing, and refrigerators that automatically restocked expired milk. The first of these, LG’s internet-connected refrigerator, hit the market in 2000. It could take stock of shelf contents, mind expiration dates, and for some reason, came with an MP3 player. It also cost $20,000. As sensors became cheaper, these internet-connected devices became more affordable for more consumers. And the invention of smart plugs, like those made by Belkin, meant that even ordinary objects could become “smart”—or, at least, you could turn them on and off with your phone.

Any IoT system today contains a few basic components. First, there’s the thing outfitted with sensors. These sensors could be anything that collects data, like a camera inside a smart refrigerator or an accelerometer that tracks speed in a smart running shoe. In some cases, sensors are bundled together to gather multiple data points: a Nest thermostat contains a thermometer, but also a motion sensor; it can adjust the temperature of a room when it senses that nobody’s in it. To make sense of this data, the device has some kind of network connectivity (Wi-Fi, Bluetooth, cellular, or satellite) and a processor where it can be stored and analyzed. From there, the data can be used to trigger an action—like ordering more milk when the carton in the smart refrigerator runs out, or adjusting the temperature automatically given a set of rules.

Most people didn’t start building an ecosystem of “smart” devices in their homes until the mass adoption of voice controls. In 2014, Amazon introduced the Echo, a speaker with a helpful voice assistant named Alexa built in. Apple had introduced Siri, its own voice assistant, four years prior—but Siri lived on your phone, while Alexa lived inside the speaker and could control all of the “smart” devices in your house. Positioning a voice assistant as the centerpiece of the smart home had several effects: It demystified the internet of things for consumers, encouraged them to buy more internet-enabled gadgets, and encouraged developers to create more “skills,” or IoT commands, for these voice assistants to learn

The same year that Amazon debuted Alexa, Apple came out with HomeKit, a system designed to facilitate interactions between Apple-made smart devices, sending data back and forth to create a network. These unifying voices have shifted the landscape away from single-purpose automations and toward a more holistic system of connected things. Tell the Google Assistant “goodnight,” for example, and the command can dim the lights, lock the front door, set the alarm system, and turn on your alarm clock. LG’s SmartThinQ platform connects many home appliances, so you can select a chocolate chip cookie recipe from the screen of your smart fridge and it’ll automatically preheat the oven. Manufacturers bill this as the future, but it’s also a convenient way to sell more IoT devices. If you already have an Amazon Echo, you might as well get some stuff for Alexa to control.

By 2014, the number of internet-connected devices would surpass the number of people in the world. David Evans, the former chief futurist at Cisco, estimated in 2015 that “an average 127 new things are connected to the internet” every second. Today, there are over 20 billion connected things in the world, according to estimates from Gartner. The excitement around the brave new internet-connected world has been matched with concern. All of these objects, brought to life like Pinocchio, have made the world easier to control: You can let the delivery man in the front door, or change the temperature inside the house, all with a few taps on a smartphone. But it’s also given our objects—and the companies that make them—more control over us.

The WIRED Guide to 5G

The WIRED Guide to 5G

The future depends on connectivity. From artificial intelligence and self-driving cars to telemedicine and mixed reality to as yet undreamt technologies, all the things we hope will make our lives easier, safer, and healthier will require high-speed, always-on internet connections.

To keep up with the explosion of new connected gadgets and vehicles, not to mention the deluge of streaming video, the mobile industry has introduced something called 5G—so named because it’s the fifth generation of wireless networking technology.

The promise is that 5G will bring speeds of around 10 gigabits per second to your phone. That’s more than 600 times faster than the typical 4G speeds on today’s mobile phones, and 10 times faster than Google Fiber’s standard home broadband service—fast enough to download a 4K high-definition movie in 25 seconds, or to stream several at the same time.

Eventually anyway. While US carriers have introduced 5G networks in dozens of cities, the first ones aren’t nearly that fast.

At first many carriers began rolling out 5G by building atop their 4G or LTE networks, which produced lots of connectivity, but not at the speeds most associated with 5G. Gradually, the major American telecom carriers have introduced standalone versions of their networks, meaning they don’t piggyback on existing infrastructure. T-M0bile’s offering covers 1.3 million square miles, or 34 percent of the US. When T-Mobile acquired Sprint earlier this year, it picked up a substantial amount of wireless spectrum, which is now part of T-Mobile’s network. Dish Network acquired some of Sprint’s wireless assets as a condition of the merger, and the satellite company is now developing its own cellular service.

Early in its 5G efforts, AT&T marketed a network it described as 5G E, but experts called it a spiffed-up version of the company’s current LTE network, and the National Advertising Review Board eventually recommended the company stop using that terminology, saying it was misleading consumers. The company says its 5G network reaches 205 million people and offers speeds that are similar to or faster than its LTE offering. In July 2020, AT&T announced that its 5G+ service, which runs in the faster millimeter wave spectrum (more on that shortly), is available in parts of 35 cities.

Like AT&T, Verizon is using mmWave, the fastest part of 5G spectrum, for its network, which means customers can expect fast speeds but, so far, less broad coverage. The company says its 5G Ultrawide offering is available in 36 cities.

Why are the availability and speeds so variable? It’s because 5G service is offered in three different parts of the electromagnetic spectrum. Low-band, which operates below 1 Ghz , can reach speeds of 250 mbps. The trade-off for low-band’s comparatively slower speeds is a broad reach, which means carriers can leave more distance between towers using this kind of equipment.

Analysts call the mid-band of the 5G spectrum the sweet spot, as it has a broad geographic reach and is faster than low-band. Mid-band operates between 1 and 6 GHz and can achieve speeds up to 1 Gbps. AT&T and T-Mobile’s wide-reaching 5G networks operate in the mid-band.

To reach the top speeds associated with 5G, carriers need millimeter-wave (or mmWave) technology, which takes advantage of the very high end of the wireless spectrum. mmWave could enable those 10-Gbps speeds, but it comes with a trade-off: Millimeter-wave signals are less reliable over long distances and are easily disrupted by obstacles like trees, people, and even rain. To make it practical for mobile use, carriers need to deploy huge numbers of small access points in cities, instead of relying on a few big cell towers as they do today.

Of course, for mobile users to take advantage of these new 5G networks, they’ll need new devices. Most major phone makers either offer 5G handsets now or expect to by the end of 2020. Samsung, LG, and Motorola sell 5G-compatible phones; Google is working on a 5G version of the Pixel, and a 5G-compatible iPhone is expected before the end of this year. To date about 4.6 million 5G-compatible phones have been sold, according to the consultancy M Science; that means fewer than 2 percent of Americans with cell phones can take advantage of 5G.

The Race for 5G Dominance

The US has been keen to claim a leadership role in worldwide 5G deployment, but so far it hasn’t fully succeeded. China-based Huawei is the world’s leading maker of 5G network equipment, and while its equipment is deployed widely, the company has faced scrutiny from western nations for its alleged ties to the Chinese government. The Trump administration is intent on keeping Huawei technology out of American networks, and earlier this year the US Department of Justice accused the company of conspiring to steal American trade secrets. Another fear has been that if China is first to 5G, its burgeoning tech industry will create the next global mobile platform; 5G could also give China an edge in the AI race. More devices connected to networks would mean more data. More data with which to train algorithms could mean better AI applications. The US government has also said Huawei can’t use American-built technology in its networking chips. The UK, Australia, India, Japan, and Taiwan are among the countries that have banned Huawei equipment from their networks. The bans stand to benefit companies like Nokia, Ericsson, and Samsung—notably, none of them headquartered in the US—which also make 5G equipment.

As the US struggles to lead on the network side, it’s also behind in 5G from a speed perspective. A recent report from the UK-based research firm Opensignal analyzed the speeds that users typically get and found that Saudi Arabia had the fastest 5G download, topping out at 144.5 Mbps, with Canada ranking second at 90.4 Mbps. (The consultancy didn’t include China in its analysis.) South Korea has the highest rate of 5G adoption, with 10 percent of users on 5G, and its networks ranked third; the US, with an average speed of 33.4 Mbps, ranked 11th. Users are connected to 5G 20 percent of the time or more in only four countries, Opensignal found; the US, where users connected to 5G 19.3 percent of the time, ranked fifth. “The US is much higher ranked on 5G availability than on average download speed because the low-band spectrum is ideally suited to enable great 5G reach and allow users to spend more time connected than in countries with higher frequency 5G spectrum,” Opensignal wrote. In recent tests both Opensignal and PC Magazine found in tests that Verizon offered the fastest 5G speeds among American cell phone carriers. The top download speeds the surveys found varied considerably (an average of 494.7 Mbps from Opensignal and 105.1 Mbps from PC Magazine), but the results suggest that exponentially faster cellular networks aren’t just on the horizon; they’re here.

What is 5G The Complete Guide to When Why and How

How We Got From 1G to 5G

The first generation of mobile wireless networks, built in the late 1970s and 1980s, was analog. Voices were carried over radio waves unencrypted, and anyone could listen in on conversations using off-the-shelf components. The second generation, built in the 1990s, was digital—which made it possible to encrypt calls, make more efficient use of the wireless spectrum, and deliver data transfers on par with dialup internet or, later, early DSL services. The third generation gave digital networks a bandwidth boost and ushered in the smartphone revolution.

What is 5G? The Complete Guide to When, Why, and How

What is 5G? The Complete Guide to When, Why, and How

The future depends on connectivity. From artificial intelligence and self-driving cars to telemedicine and mixed reality to as yet undreamt technologies, all the things we hope will make our lives easier, safer, and healthier will require high-speed, always-on internet connections.

To keep up with the explosion of new connected gadgets and vehicles, not to mention the deluge of streaming video, the mobile industry has introduced something called 5G—so named because it’s the fifth generation of wireless networking technology.

The promise is that 5G will bring speeds of around 10 gigabits per second to your phone. That’s more than 600 times faster than the typical 4G speeds on today’s mobile phones, and 10 times faster than Google Fiber’s standard home broadband service—fast enough to download a 4K high-definition movie in 25 seconds, or to stream several at the same time.

Eventually anyway. While US carriers have introduced 5G networks in dozens of cities, the first ones aren’t nearly that fast.

At first many carriers began rolling out 5G by building atop their 4G or LTE networks, which produced lots of connectivity, but not at the speeds most associated with 5G. Gradually, the major American telecom carriers have introduced standalone versions of their networks, meaning they don’t piggyback on existing infrastructure. T-M0bile’s offering covers 1.3 million square miles, or 34 percent of the US. When T-Mobile acquired Sprint earlier this year, it picked up a substantial amount of wireless spectrum, which is now part of T-Mobile’s network. Dish Network acquired some of Sprint’s wireless assets as a condition of the merger, and the satellite company is now developing its own cellular service.

Early in its 5G efforts, AT&T marketed a network it described as 5G E, but experts called it a spiffed-up version of the company’s current LTE network, and the National Advertising Review Board eventually recommended the company stop using that terminology, saying it was misleading consumers. The company says its 5G network reaches 205 million people and offers speeds that are similar to or faster than its LTE offering. In July 2020, AT&T announced that its 5G+ service, which runs in the faster millimeter wave spectrum (more on that shortly), is available in parts of 35 cities.

Like AT&T, Verizon is using mmWave, the fastest part of 5G spectrum, for its network, which means customers can expect fast speeds but, so far, less broad coverage. The company says its 5G Ultrawide offering is available in 36 cities.

Why are the availability and speeds so variable? It’s because 5G service is offered in three different parts of the electromagnetic spectrum. Low-band, which operates below 1 Ghz , can reach speeds of 250 mbps. The trade-off for low-band’s comparatively slower speeds is a broad reach, which means carriers can leave more distance between towers using this kind of equipment.

Analysts call the mid-band of the 5G spectrum the sweet spot, as it has a broad geographic reach and is faster than low-band. Mid-band operates between 1 and 6 GHz and can achieve speeds up to 1 Gbps. AT&T and T-Mobile’s wide-reaching 5G networks operate in the mid-band.

To reach the top speeds associated with 5G, carriers need millimeter-wave (or mmWave) technology, which takes advantage of the very high end of the wireless spectrum. mmWave could enable those 10-Gbps speeds, but it comes with a trade-off: Millimeter-wave signals are less reliable over long distances and are easily disrupted by obstacles like trees, people, and even rain. To make it practical for mobile use, carriers need to deploy huge numbers of small access points in cities, instead of relying on a few big cell towers as they do today.

Of course, for mobile users to take advantage of these new 5G networks, they’ll need new devices. Most major phone makers either offer 5G handsets now or expect to by the end of 2020. Samsung, LG, and Motorola sell 5G-compatible phones; Google is working on a 5G version of the Pixel, and a 5G-compatible iPhone is expected before the end of this year. To date about 4.6 million 5G-compatible phones have been sold, according to the consultancy M Science; that means fewer than 2 percent of Americans with cell phones can take advantage of 5G.

The Race for 5G Dominance

The US has been keen to claim a leadership role in worldwide 5G deployment, but so far it hasn’t fully succeeded. China-based Huawei is the world’s leading maker of 5G network equipment, and while its equipment is deployed widely, the company has faced scrutiny from western nations for its alleged ties to the Chinese government. The Trump administration is intent on keeping Huawei technology out of American networks, and earlier this year the US Department of Justice accused the company of conspiring to steal American trade secrets. Another fear has been that if China is first to 5G, its burgeoning tech industry will create the next global mobile platform; 5G could also give China an edge in the AI race. More devices connected to networks would mean more data. More data with which to train algorithms could mean better AI applications. The US government has also said Huawei can’t use American-built technology in its networking chips. The UK, Australia, India, Japan, and Taiwan are among the countries that have banned Huawei equipment from their networks. The bans stand to benefit companies like Nokia, Ericsson, and Samsung—notably, none of them headquartered in the US—which also make 5G equipment.

As the US struggles to lead on the network side, it’s also behind in 5G from a speed perspective. A recent report from the UK-based research firm Opensignal analyzed the speeds that users typically get and found that Saudi Arabia had the fastest 5G download, topping out at 144.5 Mbps, with Canada ranking second at 90.4 Mbps. (The consultancy didn’t include China in its analysis.) South Korea has the highest rate of 5G adoption, with 10 percent of users on 5G, and its networks ranked third; the US, with an average speed of 33.4 Mbps, ranked 11th. Users are connected to 5G 20 percent of the time or more in only four countries, Opensignal found; the US, where users connected to 5G 19.3 percent of the time, ranked fifth. “The US is much higher ranked on 5G availability than on average download speed because the low-band spectrum is ideally suited to enable great 5G reach and allow users to spend more time connected than in countries with higher frequency 5G spectrum,” Opensignal wrote. In recent tests both Opensignal and PC Magazine found in tests that Verizon offered the fastest 5G speeds among American cell phone carriers. The top download speeds the surveys found varied considerably (an average of 494.7 Mbps from Opensignal and 105.1 Mbps from PC Magazine), but the results suggest that exponentially faster cellular networks aren’t just on the horizon; they’re here.

The WIRED Guide to Crispr

The WIRED Guide to Crispr

Before long, DuPont bought the Danish company that Barrangou worked for and began using strains carrying this naturally occurring Crispr to protect all of its yogurt and cheese cultures. Since DuPont owns about 50 percent of the global dairy culture market, you’ve probably already eaten Crispr-optimized cheese on your pizza.

All the while, gene sequencing costs were plummeting and research scientists around the world were assembling the genomes of bacteria. As they did, they found Crisprs everywhere—more than half of the bacterial kingdom turned out to have them. Oftentimes those sequences were flanked by a set of genes coding for a class of strand-cutting enzymes called endonucleases. Scientists suspected they were involved in this primitive immune system, but how, exactly?

The key insight came from a particularly nasty bug—the one that causes strep throat. Its Crispr system made two RNA sequences that attached to a clam-shaped endonuclease called Cas9. Like a genetic GPS, those sequences directed the enzyme to a strand of DNA complementary to the RNA sequences. When it got there, Cas9 changed shape, grabbing the DNA and slicing it in two. The molecular biologists who made this discovery—Jennifer Doudna and Emmanuelle Charpentier—demonstrated Crispr’s programmable cutting on circular stretches of DNA floating in test tubes. They published their work in Science in 2012, but not before patenting the technology as a tool for genetic engineering. If you just switch out the RNA guide, you can send Cas9 anywhere—to the gene that causes Huntington’s disease, say, and snip it out. Crispr, they realized, would be a molecular biologist’s warp drive.

Six months later, a molecular biologist at the Broad Institute of MIT and Harvard named Feng Zhang published a paper in Science showing that Crispr-Cas9 could edit human cells, too. In fact, with the right genetic guides, you can Crispr pretty much anything. That meant it might be put to work on next-generation medicines that could do things like erase genetic defects and supercharge the body’s natural defenses against cancer. And that meant big money.

Perhaps predictably, a patent battle ensued—one that is still going on today. Crispr’s early pioneers founded three companies with exclusive licenses to exploit Crispr/Cas9 to cure human diseases; one of them began its first human trials in early 2019. Uncertainty over who will ultimately own the technology has done little to slow the appetite for all things Crispr. If anything, it unleashed a flood of interest in developing competing and adjacent tools that promise to further refine and expand Crispr’s already ample potential.

Many of the field’s founding luminaries have also formed, or are currently advising, companies working to lower the cost and labor associated with gene editing, to make it accessible to everyone. But in November 2018, at least some of them got a lesson in what democratization of Crispr really looks like.

On the eve of the Second International Summit on Human Gene Editing, news broke that a Chinese scientist named He Jiankui, who was scheduled to speak at the meeting, had been recruiting couples in an effort to create the first Crispr’d babies. Hours later, He Jiankui himself posted five slickly produced promotional videos to YouTube claiming to have already done so: “Two beautiful little Chinese girls, Lulu and Nana, came crying into the world as healthy as any other babies a few weeks ago.” The only difference was that the twins had been injected with Crispr when they were still embryos, in an effort to eliminate a gene called CCR5 and make them resistant to HIV. In a presentation to the summit a few days later, He provided further evidence of his experiment, which he appears to have conducted largely in secret, and revealed that a second pregnancy was underway. Buried in the pages of his clinical paperwork were notes that indicated He had ordered his Crispr components from US biotech companies, in violation of their “research use only” policies.

These firms joined the scientific community’s chorus of disgust, outrage, and near-unanimous condemnation of He’s work. Jennifer Doudna said she was “horrified,” Feng Zhang called for an immediate moratorium on the implantation of gene-edited embryos, and more than 100 Chinese scientists signed a letter decrying the study as “crazy.” Within days, He had been fired from his university post and all his research activities were suspended. A subsequent investigation by government authorities found that He violated Chinese law, and he is now serving a three-year prison sentence.

And as new revelations keep trickling in, policymakers are scrambling to lay down some ground rules for this new Crispr-baby world. In the aftermath of the He debacle, China formed a new national ethics committee with broad authority over all high-risk medical biotechnologies. It will be tasked with enforcing the country’s new clinical research guidelines, released in February. The World Health Organization has assembled a panel to develop global standards for governments to follow. Late last year, the Russian government cited the advice of this panel when it barred a Russian scientist from creating Crispr babies.

What is Crispr Gene Editing? The Complete WIRED Guide

What is Crispr Gene Editing? The Complete WIRED Guide

IN THE EARLY days of gene editing, biologists had a molecular tool kit that was somewhat akin to a printing press. Which is to say, altering DNA was a messy, labor-intensive process of loading genes onto viruses bound for target cells. It involved more than a fair amount of finger-crossing. Today, scientists have the genetic equivalent of Microsoft Word, and they are beginning to edit DNA almost as easily as software engineers modify code. The precipitating event? Call it the Great Crispr Quake of 2012.

If you’re asking “What’s Crispr?” the short answer is that it’s a revolutionary new class of molecular tool that scientists can use to precisely target and cut any kind of genetic material. Crispr systems are the fastest, easiest, and cheapest methods scientists have ever had to manipulate the code of life in any organism on Earth, humans included. It is, simply, the first technology truly capable of changing the fundamental chemistry of who we are.

The long answer is that Crispr stands for Clustered Regularly Interspaced Palindromic Repeats. A Crispr system consists of a protein with sequence-snipping capabilities and a genetic GPS guide. Such systems naturally evolved across the bacterial kingdom as a way to remember and defend against invading viruses. But researchers recently discovered they could repurpose that primordial immune system to precisely alter genomes, setting off a billion-dollar boom in DNA hacking.

Every industry is throwing mad money at Crispr—pharma, agriculture, energy, materials manufacturing, you name it. Even the weed guys want in. Companies are using it to make climate-change-fighting crops, biofuel-oozing algae, self-terminating mosquitoes—and, yes, potential Covid-19 treatments. Academic researchers have almost universally adopted Crispr to more deeply understand the biology of their model organisms. Supporting this biohacking bonanza is an increasingly crowded Crispr backend supply chain: businesses building gene-editor design tools and shipping synthetic guide RNAs or pre-Crispr’d cell lines to these companies’ doors. So far, though, very few Crispr-enhanced products have made it into the hands of actual consumers. In their place, hyperbolic headlines have bugled society’s greatest hopes and fears for the technology, from saving near-extinct species to igniting a superbaby arms race.

In November 2018, a Chinese scientist named He Jiankui stunned the world with claims that he had Crispr’d the first humans in an experiment fraught with ethical violations. The fast-unfolding scandal roused the world’s scientists and government officials to address the now-urgent need to figure out how to regulate such a powerful technology. Crispr may have delivered designer children faster than anyone thought possible. But it’s still a long way from ending disease or hunger or climate change. Maybe it never will. Crispr is, however, already beginning to reshape the physical world around us in much less radical ways, one base pair at a time.

What is Crispr Gene Editing The Complete WIRED Guide

The History of Crispr

It all started with yogurt. To make it, dairy producers have long employed the help of Streptococcus thermophilus, bacteria that gobble up the lactose in milk and poop out lactic acid. It wasn’t until 2005, though, that a young microbiologist named Rodolphe Barrangou discovered that S. thermophilus contained odd chunks of repeating DNA sequences—Crisprs—and that those sequences were keeping it safe from the viruses that can attack it and result in spoilage. (If the thermophilus is gone, nastier bacteria can move in and feed off the lactose, ruining the product.)

Before long, DuPont bought the Danish company that Barrangou worked for and began using strains carrying this naturally occurring Crispr to protect all of its yogurt and cheese cultures. Since DuPont owns about 50 percent of the global dairy culture market, you’ve probably already eaten Crispr-optimized cheese on your pizza.

All the while, gene sequencing costs were plummeting and research scientists around the world were assembling the genomes of bacteria. As they did, they found Crisprs everywhere—more than half of the bacterial kingdom turned out to have them. Oftentimes those sequences were flanked by a set of genes coding for a class of strand-cutting enzymes called endonucleases. Scientists suspected they were involved in this primitive immune system, but how, exactly?

The key insight came from a particularly nasty bug—the one that causes strep throat. Its Crispr system made two RNA sequences that attached to a clam-shaped endonuclease called Cas9. Like a genetic GPS, those sequences directed the enzyme to a strand of DNA complementary to the RNA sequences. When it got there, Cas9 changed shape, grabbing the DNA and slicing it in two. The molecular biologists who made this discovery—Jennifer Doudna and Emmanuelle Charpentier—demonstrated Crispr’s programmable cutting on circular stretches of DNA floating in test tubes. They published their work in Science in 2012, but not before patenting the technology as a tool for genetic engineering. If you just switch out the RNA guide, you can send Cas9 anywhere—to the gene that causes Huntington’s disease, say, and snip it out. Crispr, they realized, would be a molecular biologist’s warp drive.

Six months later, a molecular biologist at the Broad Institute of MIT and Harvard named Feng Zhang published a paper in Science showing that Crispr-Cas9 could edit human cells, too. In fact, with the right genetic guides, you can Crispr pretty much anything. That meant it might be put to work on next-generation medicines that could do things like erase genetic defects and supercharge the body’s natural defenses against cancer. And that meant big money.